Penerapan Clustering K-Means untuk Pengelompokan Tingkat Kepuasan Pengguna Lulusan Perguruan Tinggi
DOI:
https://doi.org/10.30865/mib.v6i3.4191Keywords:
Questionnaire, Quality, Graduate, Clustering, K-MeansAbstract
One way to evaluate the quality of graduates is to provide questionnaires to graduate users, namely agencies / companies in the world of work in order to assess the quality of graduates of each university. Questionnaires for graduates are generally carried out by filling out the questionnaire form physically and then returning to the college. The K-Means method is one of several non-hierarchical clustering methods. Data clustering techniques are easy, simple and fast. Many approaches to creating clusters or groups, such as creating rules that dictate membership in the same group/group based on the level of similarity between the members of the group. Other approaches such as creating a set of functions to measure multiple criteria from grouping as a function of some parameters of clustering/grouping. From the results and discussions, K-Means clustering succeeded in grouping graduate user satisfaction data into three clusters where the results shown by manual calculations and applications showed the same results where clusterS C1 as many as 48 alternatives, C2 as many as 1 alternative, and C3 as many as 2 alternatives. In the sense that the application that is built successfully implements K-Means clustering is evidenced by the comparison of applications with weka tools has similar percentage results. In terms of the percentage of graduate users or alumni from STMIK PPKIA Tarakanita Rahmawati 94.12% Very satisfied, 1.96% Satisfied and 3.92% Quite Satisfied.References
Universitas Airlangga, “Tentang Tracer Study,†Universitas Airlangga, 2021.
A. D. Bambang Setia Budi, “Report Tracer Study ITB 2015,†Bandung ITB Press, 2017, [Online]. Available: https://scholar.google.co.id/citations?view_op=view_citation&hl=id&user=XK2IqygAAAAJ&citation_for_view=XK2IqygAAAAJ:u-x6o8ySG0sC
R. Noveandini and M. Sri Wulandari, “Analisis Clustering K-Means Pada Pengelompokkan Hasil Tracer Study Sebagai Media Informasi Dalam Pengembangan Kurikulum Program Studi,†Semin. Nas. SeNTIK, vol. 3, 2019.
doi:http://dx.doi.org/10.32409/jikstik.3.1.254
n sinsu, o lumasuge, and ..., “Clustering Sebaran Alumni Program Studi Sistem Informasi Politeknik Negeri Nusa Utara,†J. Ilm. …, 2020.
R. Muktiadi and A. Y. Badharudin, “Metode K-Means untuk Mengelompokkan Alumni Berdasarkan Waktu Mencari Pekerjaan,†Sainteks, vol. 16, no. 1, 2020, doi: 10.30595/sainteks.v16i1.7019.
B. W. Nugraha, A. Mahmudi, and F. S. Wahyuni, “PENERAPAN METODE K-MEANS UNTUK PENGELOMPOKAN TINGKAT KEPUASAN PENGGUNA LULUSAN PADA TRACER STUDY PUSAT KARIR ITN MALANG,†JATI (Jurnal Mhs. Tek. Inform., 2021.
R. Rosmini, A. Fadlil, and S. Sunardi, “Implementasi Metode K-Means Dalam Pemetaan Kelompok Mahasiswa Melalui Data Aktivitas Kuliah,†IT J. Res. Dev., vol. 3, no. 1, 2018, doi: 10.25299/itjrd.2018.vol3(1).1773.
M. Rizka, A. Amri, H. Hendrawaty, and M. Mahdi, “Analisis Dan Perancangan Sistem Informasi Tracer Study Berbasis WEB,†J. Infomedia, vol. 3, no. 2, 2018, doi: 10.30811/jim.v3i2.716.
R. Akbar and M. Mukhtar, “Perancangan E-Tracer Study berbasis Sistem Cerdas,†J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 1, 2020, doi: 10.32736/sisfokom.v9i1.631.
M. Adie Syaputra and I. Fatima, “Penerapan Sistem Informasi Tracer Study Pada Universitas Muhammadiyah Kotabumi,†Sienna, vol. 1, no. 1, 2020, doi: 10.47637/sienna.v1i1.269.
F. Nasari and S. Darma, “Penerapan K-Means Clustering Pada Data Penerimaan Mahasiswa Baru,†Semin. Nas. Teknol. Inf. dan Multimed. 2015, 2015.
Y. Darmi, “PENERAPAN METODE CLUSTERING K-MEANS DALAM PENGELOMPOKAN PENJUALAN PRODUK,†J. Media Infotama, vol. 12, 2016.
B. Poerwanto and R. Y. Fa’rifah, “Analisis Cluster K-Means dalam Pengelompokan Kemampuan Mahasiswa,†J. Sci. Pinisi, vol. 2, no. 2, 2016.
E. Rivani, “Aplikasi K-Means Cluster untuk Pengelompokkan Provinsi Berdasarkan Produksi Padi, Jagung, Kedelai, dan Kacang Hijau Tahun 2019,†J. Mat Stat, vol. 10, no. 2, 2010.
J. O. Ong, “Implementasi Algotritma K-means clustering untuk menentukan strategi marketing president university,†J. Ilm. Tek. Ind., vol. vol.12, no, no. juni, 2013.
M. Borkowska-Niszczota, “Tourism Clusters in Eastern Poland - Analysis of Selected Aspects of the Operation,†Procedia - Soc. Behav. Sci., vol. 213, 2015, doi: 10.1016/j.sbspro.2015.11.511.
M. Vélez-FalconÃ, J. MarÃn, S. Jiménez, and L. Guachi-Guachi, “Comparative study of distance measures for the fuzzy C-means and K-means non-supervised methods applied to image segmentation,†in CEUR Workshop Proceedings, 2020, vol. 2714.
BAN-PT, “Akreditasi Perguruan Tinggi Kriteria dan Prosedur 3.0,†Badan Akreditasi Nas. Perguru. Tinggi, p. 18, 2019.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).