Clustering Pengunjung Mall Menggunakan Metode K-Means dan Particle Swarm Optimization

Authors

  • Teuku Muhammad Dista Universitas Amikom Yogyakarta, Yogyakarta
  • Ferian Fauzi Abdulloh Universitas Amikom Yogyakarta, Yogyakarta

DOI:

https://doi.org/10.30865/mib.v6i3.4172

Keywords:

Clustering, Algorithm, K-Means, Particle Swarm Optimization, Davies Bouldin Index, Jupyter Notebook

Abstract

This research aims to cluster mall visitors. This is motivated by the mall's income which has decreased since the pandemic. Later from these several clusters we can find out the characteristics of the mall's visitors. Those characteristics will be used later to increase the income from the mall. In this research, we use a dataset from Kaggle named Pengunjung_mall in CSV format which will later be processed using Python language on Jupiter Notebooks using the K-Means method. To ensure how accurate the K-Means method is, optimization is carried out using the PSO (Particle Swarm Optimization) method. After performing clustering and optimization using Jupyter Notebook, the results will then be evaluated with DBI (Davies Bouldin Index) in Microsoft Excel to find out how well the Clustering is generated. The Clustering results obtained are used as a reference to determine the characteristics of mall visitors which is one strategy to increase Mall profits. As a result, we have succeeded in dividing mall customers into 5 clusters based on their annual earned income and expense scores. The cluster has been optimized with PSO and has succeeded in increasing the cluster resulting from the K-Means method which is proven by the Davies Bouldin Index method. This research has concluded that customers who have high income levels and have high spending scores are the targets with the highest priority level for malls.

Author Biographies

Teuku Muhammad Dista, Universitas Amikom Yogyakarta, Yogyakarta

Mahasiswa di Universitas Amikom Yogyakarta Fakultas Teknik Komputer Jurusan Informatika

Ferian Fauzi Abdulloh, Universitas Amikom Yogyakarta, Yogyakarta

Dosen di Universitas Amikom Yogyakarta Fakultas Teknik Komputer Jurusan Informatika

References

M. G. Pradana, “Memaksimalkan Strategi Peningkatan Segmentasi Pelanggan Mall Menggunakan K-means Clustering,†vol. 2, no. 1, 2021.

S. Royal, “PEMETAAN POTENSI PELANGGAN SEBAGAI STRATEGI PROMOSI PAKAIAN MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING,†2020, doi: 10.33480/jitk.v6i1.1414.

J. Dai, P. Byrnes, and M. Vasarhelyi, “Are Customers Offered Appropriate Discounts? An Exploratory Study of Using Clustering Techniques in Internal Auditing,†Rutgers Stud. Account. Anal. Audit Anal. Financ. Ind., pp. 59–69, 2019, doi: 10.1108/978-1-78743-085-320191005.

B. Komponen and P. Indeks, “1 , 2 , 3,†pp. 2–3, 2018.

A. L. Ballardini, “A tutorial on Particle Swarm Optimization Clustering,†2018, [Online]. Available: http://arxiv.org/abs/1809.01942

L. Kouhalvandi, O. Ceylan, and S. Ozoguz, “Automated Deep Neural Learning-Based Optimization for High Performance High Power Amplifier Designs,†IEEE Trans. Circuits Syst. I Regul. Pap., vol. 67, no. 12, pp. 4420–4433, 2020, doi: 10.1109/TCSI.2020.3008947.

A. Akmal, “Predicting Dropout on E-learning Using Machine Learning,†J. Appl. Data Sci., vol. 1, no. 1, pp. 29–34, 2020, doi: 10.47738/jads.v1i1.9.

S. Hidayat, M. Matsuoka, S. Baja, and D. A. Rampisela, “Object-based image analysis for sago palm classification: The most important features from high-resolution satellite imagery,†Remote Sens., vol. 10, no. 8, 2018, doi: 10.3390/RS10081319.

L. L. Rego, N. A. Morgan, and C. Fornell, “Reexamining the market share-customer satisfaction relationship,†J. Mark., vol. 77, no. 5, pp. 1–20, 2013, doi: 10.1509/jm.09.0363.

I. Markoulidakis, I. Rallis, I. Georgoulas, G. Kopsiaftis, A. Doulamis, and N. Doulamis, “A Machine Learning Based Classification Method for Customer Experience Survey Analysis,†Technologies, vol. 8, no. 4, p. 76, 2020, doi: 10.3390/technologies8040076.

O. Dogan, C. Fernandez-Llatas, and B. Oztaysi, Process mining application for analysis of customer’s different visits in a shopping mall, vol. 1029. Springer International Publishing, 2020. doi: 10.1007/978-3-030-23756-1_20.

I. P. SarI, E. Fatkhiyah, and J. Triyono, “Data Mining Mnggunakan Algoritma K-Means Clustering Untuk Pengelompokan Produk Yang Paling Tidak Laku Terjual Pada Koperasi Mahasiswa Universitas Negeri Yogyakarta(Kopma Uny),†J. Scr., vol. 6, no. 1, pp. 55–61, 2018, [Online]. Available: https://ejournal.akprind.ac.id/index.php/script/article/view/620

D. Triyansyah and D. Fitrianah, “Analisis Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing,†J. Telekomun. dan Komput., vol. 8, no. 3, p. 163, 2018, doi: 10.22441/incomtech.v8i3.4174.

L. A. Setiyo and I. F. B. Andoro, “PENERAPAN ALGORITMA K-MEANS UNTUK ( Studi Kasus : Universitas Katolik Widya Mandala Kampus Kota Madiun ),†pp. 1–8, 2021.

G. K. Patel, V. K. Dabhi, and H. B. Prajapati, “Clustering Using a Combination of Particle Swarm Optimization and K-means,†J. Intell. Syst., vol. 26, no. 3, pp. 457–469, 2017, doi: 10.1515/jisys-2015-0099.

E. Muningsih, I. Maryani, and V. R. Handayani, “Penerapan Metode K-Means dan Optimasi Jumlah Cluster dengan Index Davies Bouldin untuk Clustering Propinsi Berdasarkan Potensi Desa,†J. Sains dan Manaj., vol. 9, no. 1, pp. 95–100, 2021, [Online]. Available: https://ejournal.bsi.ac.id/ejurnal/index.php/evolusi/article/view/10428/4839

M. D. Kartikasari, “Self-Organizing Map Menggunakan Davies-Bouldin Index dalam Pengelompokan Wilayah Indonesia Berdasarkan Konsumsi Pangan,†Jambura J. Math., vol. 3, no. 2, pp. 187–196, 2021, doi: 10.34312/jjom.v3i2.10942.

Dataset Kaggle by Bakti Siregar “Pengunjung Mall†https://www.kaggle.com/datasets/baktisiregar/datapengunjungmall

Downloads

Published

2022-07-25

Issue

Section

Articles