Klasifikasi Data Review IMDb Berdasarkan Analisis Sentimen Menggunakan Algoritma Support Vector Machine

Authors

  • Gita Cahyani Universitas AMIKOM Yogyakarta , Yogyakarta
  • Wiwi Widayani Universitas AMIKOM Yogyakarta , Yogyakarta
  • Sharazita Dyah Anggita Universitas AMIKOM Yogyakarta , Yogyakarta
  • Yoga Pristyanto Universitas AMIKOM Yogyakarta , Yogyakarta
  • Ikmah Ikmah Universitas AMIKOM Yogyakarta , Yogyakarta
  • Acihmah Sidauruk Universitas AMIKOM Yogyakarta , Yogyakarta

DOI:

https://doi.org/10.30865/mib.v6i3.4023

Keywords:

Sentiment Analysis, Support Vector Machine, Internet Movie Database (IMDb)

Abstract

Advances in Web 2.0 technology encourage the creation of personal website content involving sentiments such as blogs, tweets, web forums, and various types of social media. The Internet Movie Database (IMDb) is a website that provides information about films from around the world, including the people involved, nominations received, and reviews from visitors. The number of movies and reviews on IMDb causes users or visitors to check the reviews to find out the film rating, so it takes time for users who have no experience using IMDb. Sentiment analysis can be a solution to label positive and negative reviews. One of the algorithms used in sentiment analysis is the Support Vector Machine (SVM) algorithm. This study aimed to test the accuracy of the SVM algorithm in the classification of sentiment review films on IMDb. The tests carried out using the Support Vector Machine algorithm resulted in an accuracy value of 86.5%. The SVM algorithm can also produce a precision value of 90.67% and a recall value of 91.62%.

References

M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,†J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.

B. Saberi and S. Saad, “Sentiment analysis or opinion mining: A review,†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 5, pp. 1660–1666, 2017, doi: 10.18517/ijaseit.7.5.2137.

S. Gupta, “Sentiment Analysis: Concept, Analysis and Applications,†Toward Data Science, 2018. https://towardsdatascience.com/sentiment-analysis-concept-analysis-and-applications-6c94d6f58c17.

C. A. Putri, Adiwijaya and S. Al Faraby, “Analisis Sentimen Review Film Berbahasa Inggris Dengan Pendekatan Bidirectional Encoder Representations from Transformersâ€,Jurnal Teknik Informatika dan Sistem Informasi ISSN 2407-4322, Vol. 6, No. 2, Maret 2020, Hal. 181-193

R. I. Pristiyanti, M. A. Fauzi, and L. Muflikhah, “Sentiment Analysis Peringkasan Review Film Menggunakan Metode Information Gain dan K-Nearest Neighbor,†J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 3, pp. 1179–1186, 2018, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1140.

S. Budi, “Text Mining Untuk Analisis Sentimen Review Film,†Techno.COM, vol. 16, no. 1, pp. 1–8, 2017.

A. S. Pangestu and H. M. Jumhur,â€Pengaruh Rating Imdb Terhadap Keputusan Menonton Film Game Of Thrones Di Kota Bandung Tahun 2018â€, e-Proceeding of Management : Vol.5, No.3 Desember 2018, Page 3253, 2018

Y. Nurdiansyah, S. Bukhori, and R. Hidayat, “Sentiment analysis system for movie review in Bahasa Indonesia using naive bayes classifier method,†J. Phys. Conf. Ser., vol. 1008, no. 1, 2018, doi: 10.1088/1742-6596/1008/1/012011.

W. A. Luqyana, I. Cholissodin, and R. S. Perdana, “Analisis Sentimen Cyberbullying Pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine,†J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 11, pp. 4704–4713, 2018.

A. Pandhu and W. Diki, “Analisa sentimen dan Klasifikasi Komentar Positif Pada Twitter dengan Naïve Bayes Classification,†BRITech (Jurnal Imiah Komputer, Sains dan Teknol. Terap., vol. 1, no. 2, pp. 32–40, 2020.

A. Salam, J. Zeniarja, and R. S. U. Khasanah, “Analisis Sentimen Data Komentar Sosial Media Facebook Dengan K-Nearest Neighbor (Studi Kasus Pada Akun Jasa Ekspedisi Barang J&T Ekpress Indonesia),†Pros. SINTAK, pp. 480–486, 2018.

F. D. Ananda and Y. Pristyanto, “Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine Sentiment Analysis of Twitter Users on Internet Service Providers Using Support Vector Machine Algorithm,†Matrik J. Manajemen, Tek. Inform. dan Rekayasa, vol. 20, no. 2, pp. 407–416, 2021, doi: 10.30812/matrik.v20i2.1130.

S. Nur Hakim, A. J. Putra, and A. U. Khasanah“Sentiment analysis on myindihome user reviews using support vector machine and naïve bayes classifier methodâ€, International Journal of Industrial Optimization, Vol. 2, No. 2, pp. 151-164,2021.

R. Ardianto, T. Rivanie, Y. Alkhalifi, F. S. Nugraha and W. Gata, “Sentiment Analysis On E-Sports For Education Curriculum Using Naive Bayes And Support Vector Machineâ€,Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) 13/2 (2020), 109-122. DOI: http://dx:doi:org/10:21609/jiki:v13i2.885

F. Rahutomo, P. Y. Saputra, and M. A. Fidyawan, “Implementasi Twitter Sentiment Analysis Untuk Review Film Menggunakan Algoritma Support Vector Machine,†J. Inform. Polinema, vol. 4, no. 2, p. 93, 2018, doi: 10.33795/jip.v4i2.152.

B. Max, Principles of Data Mining. London: Springer, 2007.

R. Feldman and J. Sanger, The Text Mining Handbook. 2007.

Anam M. Khairul dkk. “Analisis Pilkada Medan pada Sosial Media Menggunakan Analisis Sentimen dan Social Network Analyisisâ€. Indonesian Journal of Computer Science. Padang, vol. 6, no. 1, p. 62, 2020.

Downloads

Published

2022-07-25

Issue

Section

Articles