Prediksi Curah Hujan Menggunakan Long Short Term Memory

Authors

  • Jamilatul Badriyah Politeknik Elektronika Negeri Surabaya, Surabaya
  • Arna Fariza Politeknik Elektronika Negeri Surabaya, Surabaya
  • Tri Harsono Politeknik Elektronika Negeri Surabaya, Surabaya

DOI:

https://doi.org/10.30865/mib.v6i3.4008

Keywords:

Prediction, Rainfall, Time Series, Multiatribut, Deep Learning

Abstract

The importance of predicting rainfall in fields that require rainfall information such as in agriculture, transportation and industry. Prediction of rainfall with statistics is done to solve the problems of this paper, thus this paper proposes prediction of rainfall using Long Short Term Memory in the case study: Surabaya City. The data used is rainfall data at two Surabaya stations, namely the Perak Meteorological Station I and the Tanjung Perak Maritime Meteorology Station from 2015 to 2020. The prediction test was carried out using the Long Short Term Memory algorithm with accuracy measurement results MSE 0.489, MAE 0.537 and R2 0.497. from these results prove that the Long Short Term Memory algorithm is better than previous studies.

References

Dwiratna, N. P. S., Nawawi, G., dan Asdak, C. 2013. Analisis Curah Hujan dan Aplikasinya dalam Penetapan Jadwal dan Pola Tanam Pertanian Lahan Kering di Kabupaten Bandung. Bionatura, 15..

R. Harun, K. Chandra Pelangi, and Y. Lasena, “PENERAPAN DATA MINING UNTUK MENENTUKAN POTENSI HUJAN HARIAN DENGAN MENGGUNAKAN ALGORITMA K NEAREST NEIGHBOR (KNN),†Online, 2020. [Online]. Available: http://e-journal.stmiklombok.ac.id/index.php/misi

S. Harlina and U. Usman, “Analisa Prediktif Curah Hujan Data Time Series Berbasis Metode Neural Network,†Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 2, p. 163, 2020, doi: 10.35585/inspir.v10i2.2586.

S. J. and S. A., “A COMPARATIVE ANALYSIS OF WEB INFORMATION EXTRACTION TECHNIQUES DEEP LEARNING vs. NAÃVE BAYES vs. BACK PROPAGATION NEURAL NETWORKS IN WEB DOCUMENT EXTRACTION,†ICTACT J. Soft Comput., vol. 06, no. 02, pp. 1123–1129, Jan. 2016, doi: 10.21917/ijsc.2016.0156.

D. Desmonda, M. Azhar Irwansyah, J. H. Hadari Nawawi, and K. Barat, “Prediksi Besaran Curah Hujan Menggunakan Metode Fuzzy Time Series,†vol. 6, no. 4, 2018.

A. Fadholi, S. Meteorologi, and D. Amir, “Persamaan Regresi Prediksi Curah Hujan Bulanan Menggunakan Data Suhu dan Kelembapan Udara di Ternate,†2013.

M. Rizki, S. Basuki, and Y. Azhar, “Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory Untuk Prediksi Curah Hujan Kota Malang,†REPOSITOR, vol. 2, no. 3, pp. 331–338, 2020.

A. Zainudin et al., Proceedings, IES 2019 : IES, International Electronics Symposium : Surabaya, Indonesia, September 27-28, 2019 : the Role of Techno-intelligence in Creating an Open Energy System Towards Energy Democracy.

A. Satyo and B. Karno, “Analisis Data Time Series Menggunakan LSTM (Long Short Term Memory) dan ARIMA (Autocorrelation Integrated Moving Average) dalam Bahasa Python,†Ultim. InfoSys, vol. XI, no. 1, 2020.

D. Septiadi, “APLIKASI SOFT COMPUTING PADA PREDIKSI CURAH HUJAN DI KALIMANTAN,†pp. 63–69, 2020..

I. Wahyuni and iini Ahda, “Pemodelan Fuzzy Inference System Tsukamoto Untuk Prediksi Curah Hujan Studi Kasus Kota Batu,†J. Ilm. Teknol. Inf. Asia, vol. 12, no. 2, 2018.

H. Jayadianti, T. A. Cahyadi, N. A. Amri, and M. F. Pitayandanu, “METODE KOMPARASI ARTIFICIAL NEURAL NETWORK PADA PREDIKSI CURAH HUJAN - LITERATURE REVIEW,†J. Tekno Insentif, vol. 14, no. 2, pp. 48–53, Aug. 2020, doi: 10.36787/jti.v14i2.150.

F. Novisnky Mandey, S. Kolibu, and M. D. Bobanto, “Pemodelan Sistem Prediksi Intensitas Curah Hujan di Kota Manado Dengan Menggunakan Kontrol Logika Fuzzy.â€

A. Satyo Bayangkari Karno, J. K. Noer Ali, and K. Bekasi, “Prediksi Data Time Series Saham Bank BRI Dengan Mesin Belajar LSTM (Long ShortTerm Memory),†J. Inf. Inf. Secur., vol. 1, no. 1, pp. 1–8, 2020, [Online]. Available: http://ejurnal.ubharajaya.ac.id/index.php/jiforty

J. Wira and G. Putra, “Pengenalan Konsep Pembelajaran Mesin dan Deep Learning Edisi 1.4 (17 Agustus 2020).â€

E. Supriyadi, “PREDIKSI PARAMETER CUACA MENGGUNAKAN DEEP LEARNING LONG-SHORT TERM MEMORY (LSTM) WEATHER PARAMETERS PREDICTION USING DEEP LEARNING LONG-SHORT TERM MEMORY (LSTM).†[Online]. Available: http://bmkgsoft.database.bmkg.go.id.

H. Freecenta, E. Y. Puspaningrum, and H. Maulana, “PREDIKSI CURAH HUJAN DI KAB.MALANG MENGGUNAKAN LSTM (Long Short Term Memory),†2022. [Online]. Available: https://dataonline.bmkg.go.id/data_iklim,

B. A. Aprian, Y. Azhar, V. Rahmayanti, and S. Nastiti, “Jurnal Politeknik Caltex Riau,†2020. [Online]. Available: https://jurnal.pcr.ac.id/index.php/jkt/

L. Nury, I. Afida, I. Putra, I. Azizah, S. Nabawi, and A. Alifia, “Pembelajaran Mesin Lanjut Forecasting Temperature Menggunakan LSTM.†[Online]. Available: www.wunderground.com.

Y. Karyadi and H. Santoso, “Prediksi Kualitas Udara Dengan Metoda LSTM, Bidirectional LSTM, dan GRUâ€.

Downloads

Published

2022-07-25

Issue

Section

Articles