Penerapan Algoritma Apriori Pada Analisa Data Penjualan Ecommerce
DOI:
https://doi.org/10.30865/mib.v6i2.3976Keywords:
Data Mining, Sales, Ecommerce, Apriori AlgorithmAbstract
Already all sectors are now using the role of this technology. The role of technology in the business sector is to carry out online transactions that can be done anytime and anywhere or commonly referred to as E-commerce. Now E-commerce has grown very rapidly, this is because there are many benefits that can be obtained from the use of E-commerce. But that does not mean that the use of e-commerce is not experiencing losses, the use of e-commerce that is not on target will also create losses for business people. Of course this is a problem that must be solved wisely by being able to read the pattern of goods requested by consumers or products that are not in demand by consumers. Where to find out the pattern can be seen from the e-commerce sales data that is already available. Data mining is a technique used to perform data processing. Data processing is carried out in data mining to obtain new information that can be implemented. A priori algorithm is a method used to find a pattern of relationships between one or more dataset items. In the results of the study, it was found that there are 3 items of E-commerce sales data that can be prioritized for sales. Where of the three items there are 3 combinations of items A1èA2 with a support value of 40% and a confidence value of 67%. A combination of items A1èA5 with a support value of 50% and a confidence value of 83%. Combination of items A2èA5 with a minimum support value of 40% and a confidence value of 50%References
A. Ariant, Erfina, N. Destria Arianti, P. Studi Sistem Informasi, and U. Nusa Putra Sukabumi Jl Raya Cibolang No, “Penerapan Metode Data Mining Terhadap Data Transaksi Penjualan Menggunakan Algoritma Apriori (Studi Kasus: Toko Fasentro Fancy),†Jursistekni.Nusaputra.Ac.Id, vol. 2, no. 3, pp. 14–22, 2020, [Online]. Available: https://jursistekni.nusaputra.ac.id/article/view/62.
R. Sari and R. Y. Hayuningtyas, “Analisis Keranjang Belanja Pada Transaksi Penjualan Menggunakan Algoritma Apriori,†EVOLUSI J. Sains dan Manaj., vol. 9, no. 1, pp. 46–51, 2021, doi: 10.31294/evolusi.v9i1.9999.
M. M. Syaikhuddin and P. Prihandoko, “Penerapan Algoritma K-Means dan Cure Dalam Menganalisa Pola Perubahan Belanja Dari Retail ke E-Commerce,†Energy, vol. 7, no. 2, pp. 44–49, 2017, [Online]. Available: https://ejournal.upm.ac.id/index.php/energy/article/view/341.
H. Rhomadhona, W. Aprianti, and J. Permadi, “Jurnal Sustainable : Jurnal Hasil Penelitian dan Industri Terapan Penerapan Data Mining Terhadap Data Penjualan Produk Kopi Menggunakan Algoritma Apriori,†vol. 10, no. 02, pp. 65–73, 2021.
Amrin Amrin, “Data Mining Dengan Algoritma Apriori untuk Penentuan Aturan Asosiasi Pola Pembelian Pupuk,†Paradigma, vol. XIX, no. 1, pp. 74–79, 2017, doi: https://doi.org/10.31294/p.v19i1.1836.
O. Nurdiawan and R. Suryatana, “Implementasi Strategis Penjualan Fashion Melalui Penerapan Data Mining Untuk Pengelompokan Market Share Fashion,†J. Tek. Komput., vol. V, no. 1, pp. 135–138, 2019, doi: 10.31294/jtk.v4i2.
A. Soma Darmawan, “Algoritma Apriori Untuk Rekomendasi Penawaran Produk Di Batik Putra Ghofur Pekalongan,†Litbang Kota Pekalongan, vol. 8, pp. 65–73, 2015.
H. Mulyana, “PEMAKAIAN METODE ASOSIASI DALAM DATA MINING UNTUK PENJUALAN LEBIH DARI SATU JENIS PRODUK PADA PERUSAHAAN,†J. Pilar Nusa Mandiri PEMAKAIAN, vol. X, no. 1, pp. 47–55, 2014.
N. C. Dewi, F. Putrawansyah, and D. Puspita, “Implementasi Algoritma FP-Growth Pada E-Commerce Kopi Pagar Alam Menggunakan Framework Codeigniter,†Indones. J. Comput. Sci., vol. 10, no. 2, 2021.
A. Sharif, “Data Mining Untuk Memprediksi Itemset Promosi Penjualan Barang Menggunakan Metode Market Basket Analysis ( Mba ) ( Studi Kasus : Toko Sentra Ponsel ),†vol. 3, no. 2, pp. 117–123, 2019.
R. D. Lestari et al., “Penerapan Data Mining Untuk Mengetahui Customer Behaviour Toko Artpedia Dengan Menggunakan Application of Data Mining To Know Customer Behaviour,†vol. 7, no. 2, pp. 7140–7146, 2020.
S. S. Prasetyo, M. Mustafid, and A. R. Hakim, “Penerapan Fuzzy C-Means Kluster Untuk Segmentasi Pelanggan E-Commerce Dengan Metode Recency Frequency Monetary (Rfm),†J. Gaussian, vol. 9, no. 4, pp. 421–433, 2020, doi: 10.14710/j.gauss.v9i4.29445.
C. A. Hartawan, “Pemanfaatan Big Data dalam Bisnis E-commerce OLX,†Intech, vol. 2, no. 2, pp. 13–18, 2021.
R. R. Aria, “K-Means to Determine the e-commerce Sales Model in Indonesia,†Int. J. Inf. Syst. Technol. Akreditasi, vol. 3, no. 36, pp. 166–172, 2020.
M. A. A. Fahmi, F. Astuti, U. K. Sa’adah, A. K. Anam, and M. Novita, “Algoritma Apriori Untuk Strategi Penjualan Produk Di E-Commerce Kwt Lestari Sejahtera,†in Sens 4, 2019, vol. 4, pp. 427–432, [Online]. Available: http://conference.upgris.ac.id/index.php/sens4/article/view/695.
M. Sholik and A. Salam, “Implementasi Algoritma Apriori untuk Mencari Asosiasi Barang yang Dijual di E-commerce OrderMas,†Techno.COM, vol. 17, no. 2, pp. 158–170, 2018.
S. Rodiyansyah, “Algoritma Apriori untuk Analisis Keranjang Belanja pada Data Transaksi Penjualan,†Infotech J., vol. 1, no. 2, p. 236599, 2015.
A. Setiawan and R. Mulyanti, “Market Basket Analysis dengan Algoritma Apriori pada Ecommerce Toko Busana Muslim Trendy,†JUITA J. Inform., vol. 8, no. 1, p. 11, 2020, doi: 10.30595/juita.v8i1.4550.
G. Lukhayu Pritalia, “Penerapan Algoritma C4.5 untuk Penentuan Ketersediaan Barang E-commerce,†Indones. J. Inf. Syst., vol. 1, no. 1, pp. 47–56, 2018, doi: 10.24002/ijis.v1i1.1727.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).