Pengaruh Metode Pengukuran Jarak pada Algoritma k-NN untuk Klasifikasi Kebakaran Hutan dan Lahan
DOI:
https://doi.org/10.30865/mib.v6i2.3967Keywords:
k-NN, Euclidean, Canberra, Chebyshev, ManhattanAbstract
Forest and land fires are a serious and recurring problem in Indonesia. The high intensity of forest fires is caused by the distribution of hotspots in fire-prone areas. One of the efforts to prevent and minimize the risk of forest fires is to identify the types of hotspots using a classification approach. One of the most popular classification algorithms is k Nearest Neighbor (k-NN). The algorithm uses a distance calculation approach in classifying objects. The purpose of this study is to classify the types of hotspots scattered in Indonesia using the k-NN algorithm and to analyze the effect of the distance calculation method on the k-NN algorithm. The types of distance measurement methods analyzed include Euclidean, Canberra, Chebyshev, and Manhattan. The dataset used is the distribution of hotspots in Indonesia obtained from Global Forest Watch (GFW). The study designed a dataset with two conditions, through the pre-processing stage and not. In general, the model accuracy of the k-NN combination with various distance measurement methods is above 90%. The pre-processing stage can increase the model's performance 1-8 times. The combination of k-NN with Manhattan is the best choice to identify the types of hotspots with an accuracy of 92.6%.References
F. Fitriyani and R. Sanjaya, “KOMPARASI ALGORITMA LR, K-NN DAN SVM UNTUK ESTIMASI AREA KEBAKARAN HUTAN,†Infotronik : Jurnal Teknologi Informasi dan Elektronika, vol. 3, no. 2, 2018, doi: 10.32897/infotronik.2018.3.2.109.
R. Agung et al., Status Hutan dan Kehutanan Indonesia. 2018.
I. M. K. Karo, “Implementasi Metode XGBoost dan Feature Importance untuk Klasifikasi pada Kebakaran Hutan dan Lahan,†Journal of Software Engineering, Information and Communication Technology, vol. 1, no. 1, pp. 10–16, 2020.
T. A. Pratiwi, M. Irsyad, R. Kurniawan, S. Agustian, and B. S. Negara, “Klasifikasi Kebakaran Hutan Dan Lahan Menggunakan Algoritma Naïve Bayes Di Kabupaten Pelalawan,†CESS (Journal of Computer Engineering, System and Science), vol. 6, no. 1, 2021, doi: 10.24114/cess.v6i1.22555.
M. Mohanapriya and J. Lekha, “Comparative study between decision tree and knn of data mining classification technique,†in Journal of Physics: Conference Series, 2018, vol. 1142, no. 1. doi: 10.1088/1742-6596/1142/1/012011.
Saruni Dwiasnati and Yudo Devianto, “Classification of forest fire areas using machine learning algorithm,†World Journal of Advanced Engineering Technology and Sciences, vol. 3, no. 1, 2021, doi: 10.30574/wjaets.2021.3.1.0048.
I. M. K. Karo, A. Khosuri, and R. Setiawan, “Effects of Distance Measurement Methods in K-Nearest Neighbor Algorithm to Select Indonesia Smart Card Recipient,†2021. doi: 10.1109/ICoDSA53588.2021.9617476.
A. Pandey and A. Jain, “Comparative Analysis of KNN Algorithm using Various Normalization Techniques,†International Journal of Computer Network and Information Security, vol. 9, no. 11, pp. 36–42, Nov. 2017, doi: 10.5815/ijcnis.2017.11.04.
H. A. Abu Alfeilat et al., “Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review,†Big Data, vol. 7, no. 4. 2019. doi: 10.1089/big.2018.0175.
I. Kadek Ananda Prana Widya and W. Astuti, “Identifikasi Teks Gereflekter pada Buku Anak dengan Algoritma k-Nearest Neighbor,†in e-Proceeding of Engineering : Vol.7, No.1 April 2020, 2020, pp. 2419–2429.
I. M. K. Karo, A. Tsany, R. Dzaky, and M. A. Saputra, “Comparative Analysis of K-Nearest Neighbor and Modified K-Nearest Neighbor Algorithm for Financial Well-Being Data Classification,†Indonesia Journal on Computing (Indo-JC), vol. 6, no. 3, pp. 26–34, 2021, doi: 10.34818/indojc.2021.6.3.593.
S. Mulyati, S. M. Husein, and R. Ramdhan, “RANCANG BANGUN APLIKASI DATA MINING PREDIKSI KELULUSAN UJIAN NASIONAL MENGGUNAKAN ALGORITMA (KNN) K-NEAREST NEIGHBOR DENGAN METODE EUCLIDEAN DISTANCE PADA SMPN 2 PAGEDANGAN,†JIKA (Jurnal Informatika), vol. 4, no. 1, 2020, doi: 10.31000/jika.v4i1.2288.
I. M. K. Karo, R. Ramdhani, A. W. Ramadhelza, and B. Z. Aufa, “A Hybrid Classification Based on Machine Learning Classifiers to Predict Smart Indonesia Program,†2020. doi: 10.1109/ICVEE50212.2020.9243195.
O. Rodrigues, “Combining Minkowski and Cheyshev: New distance proposal and survey of distance metrics using k-nearest neighbours classifier,†Pattern Recognition Letters, vol. 110, 2018, doi: 10.1016/j.patrec.2018.03.021.
S. Gultom, S. Sriadhi, M. Martiano, and J. Simarmata, “Comparison analysis of K-Means and K-Medoid with Ecluidience Distance Algorithm, Chanberra Distance, and Chebyshev Distance for Big Data Clustering,†in IOP Conference Series: Materials Science and Engineering, 2018, vol. 420, no. 1. doi: 10.1088/1757-899X/420/1/012092.
M. Nishom, “Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square,†Jurnal Informatika: Jurnal Pengembangan IT, vol. 4, no. 1, 2019, doi: 10.30591/jpit.v4i1.1253.
I. M. K. Karo, M. Y. Fajari, N. U. Fadhilah, and W. Y. Wardani, “Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship,†IOP Conference Series: Materials Science and Engineering, vol. 1232, no. 1, p. 012002, Mar. 2022, doi: 10.1088/1757-899X/1232/1/012002.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).