Pengaruh Metode Pengukuran Jarak pada Algoritma k-NN untuk Klasifikasi Kebakaran Hutan dan Lahan

Authors

  • Ichwanul Muslim Karo Karo Telkom University, Bandung http://orcid.org/0000-0002-2824-5654
  • Ananda Khosuri Universitas Surya, Tangerang
  • Juan Steiven Imanuel Septory Universitas Surya, Tangerang
  • Dimas Pebrian Supandi Universitas Surya, Tangerang

DOI:

https://doi.org/10.30865/mib.v6i2.3967

Keywords:

k-NN, Euclidean, Canberra, Chebyshev, Manhattan

Abstract

Forest and land fires are a serious and recurring problem in Indonesia. The high intensity of forest fires is caused by the distribution of hotspots in fire-prone areas. One of the efforts to prevent and minimize the risk of forest fires is to identify the types of hotspots using a classification approach. One of the most popular classification algorithms is k Nearest Neighbor (k-NN). The algorithm uses a distance calculation approach in classifying objects. The purpose of this study is to classify the types of hotspots scattered in Indonesia using the k-NN algorithm and to analyze the effect of the distance calculation method on the k-NN algorithm. The types of distance measurement methods analyzed include Euclidean, Canberra, Chebyshev, and Manhattan. The dataset used is the distribution of hotspots in Indonesia obtained from Global Forest Watch (GFW). The study designed a dataset with two conditions, through the pre-processing stage and not. In general, the model accuracy of the k-NN combination with various distance measurement methods is above 90%. The pre-processing stage can increase the model's performance 1-8 times. The combination of k-NN with Manhattan is the best choice to identify the types of hotspots with an accuracy of 92.6%.

References

F. Fitriyani and R. Sanjaya, “KOMPARASI ALGORITMA LR, K-NN DAN SVM UNTUK ESTIMASI AREA KEBAKARAN HUTAN,†Infotronik : Jurnal Teknologi Informasi dan Elektronika, vol. 3, no. 2, 2018, doi: 10.32897/infotronik.2018.3.2.109.

R. Agung et al., Status Hutan dan Kehutanan Indonesia. 2018.

I. M. K. Karo, “Implementasi Metode XGBoost dan Feature Importance untuk Klasifikasi pada Kebakaran Hutan dan Lahan,†Journal of Software Engineering, Information and Communication Technology, vol. 1, no. 1, pp. 10–16, 2020.

T. A. Pratiwi, M. Irsyad, R. Kurniawan, S. Agustian, and B. S. Negara, “Klasifikasi Kebakaran Hutan Dan Lahan Menggunakan Algoritma Naïve Bayes Di Kabupaten Pelalawan,†CESS (Journal of Computer Engineering, System and Science), vol. 6, no. 1, 2021, doi: 10.24114/cess.v6i1.22555.

M. Mohanapriya and J. Lekha, “Comparative study between decision tree and knn of data mining classification technique,†in Journal of Physics: Conference Series, 2018, vol. 1142, no. 1. doi: 10.1088/1742-6596/1142/1/012011.

Saruni Dwiasnati and Yudo Devianto, “Classification of forest fire areas using machine learning algorithm,†World Journal of Advanced Engineering Technology and Sciences, vol. 3, no. 1, 2021, doi: 10.30574/wjaets.2021.3.1.0048.

I. M. K. Karo, A. Khosuri, and R. Setiawan, “Effects of Distance Measurement Methods in K-Nearest Neighbor Algorithm to Select Indonesia Smart Card Recipient,†2021. doi: 10.1109/ICoDSA53588.2021.9617476.

A. Pandey and A. Jain, “Comparative Analysis of KNN Algorithm using Various Normalization Techniques,†International Journal of Computer Network and Information Security, vol. 9, no. 11, pp. 36–42, Nov. 2017, doi: 10.5815/ijcnis.2017.11.04.

H. A. Abu Alfeilat et al., “Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review,†Big Data, vol. 7, no. 4. 2019. doi: 10.1089/big.2018.0175.

I. Kadek Ananda Prana Widya and W. Astuti, “Identifikasi Teks Gereflekter pada Buku Anak dengan Algoritma k-Nearest Neighbor,†in e-Proceeding of Engineering : Vol.7, No.1 April 2020, 2020, pp. 2419–2429.

I. M. K. Karo, A. Tsany, R. Dzaky, and M. A. Saputra, “Comparative Analysis of K-Nearest Neighbor and Modified K-Nearest Neighbor Algorithm for Financial Well-Being Data Classification,†Indonesia Journal on Computing (Indo-JC), vol. 6, no. 3, pp. 26–34, 2021, doi: 10.34818/indojc.2021.6.3.593.

S. Mulyati, S. M. Husein, and R. Ramdhan, “RANCANG BANGUN APLIKASI DATA MINING PREDIKSI KELULUSAN UJIAN NASIONAL MENGGUNAKAN ALGORITMA (KNN) K-NEAREST NEIGHBOR DENGAN METODE EUCLIDEAN DISTANCE PADA SMPN 2 PAGEDANGAN,†JIKA (Jurnal Informatika), vol. 4, no. 1, 2020, doi: 10.31000/jika.v4i1.2288.

I. M. K. Karo, R. Ramdhani, A. W. Ramadhelza, and B. Z. Aufa, “A Hybrid Classification Based on Machine Learning Classifiers to Predict Smart Indonesia Program,†2020. doi: 10.1109/ICVEE50212.2020.9243195.

O. Rodrigues, “Combining Minkowski and Cheyshev: New distance proposal and survey of distance metrics using k-nearest neighbours classifier,†Pattern Recognition Letters, vol. 110, 2018, doi: 10.1016/j.patrec.2018.03.021.

S. Gultom, S. Sriadhi, M. Martiano, and J. Simarmata, “Comparison analysis of K-Means and K-Medoid with Ecluidience Distance Algorithm, Chanberra Distance, and Chebyshev Distance for Big Data Clustering,†in IOP Conference Series: Materials Science and Engineering, 2018, vol. 420, no. 1. doi: 10.1088/1757-899X/420/1/012092.

M. Nishom, “Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square,†Jurnal Informatika: Jurnal Pengembangan IT, vol. 4, no. 1, 2019, doi: 10.30591/jpit.v4i1.1253.

I. M. K. Karo, M. Y. Fajari, N. U. Fadhilah, and W. Y. Wardani, “Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship,†IOP Conference Series: Materials Science and Engineering, vol. 1232, no. 1, p. 012002, Mar. 2022, doi: 10.1088/1757-899X/1232/1/012002.

Downloads

Published

2022-04-25

Issue

Section

Articles