Implementasi Algoritma Haar Cascade Classifier Dalam Mendeteksi Robot Sepak Bola Beroda

Authors

  • Joshua Sitompul Universitas Dinamika Bangsa, Jambi
  • M Irwan Bustami Universitas Dinamika Bangsa, Jambi
  • Desi Kisbianty Universitas Dinamika Bangsa, Jambi

DOI:

https://doi.org/10.30865/mib.v6i4.3929

Keywords:

OpenCV, Python, Object Detection, Haar Cascade Classifier, Computer Vision.

Abstract

In soccer robot contests, generally soccer robots can recognize their own team robots through color detection using the HSV model. Robots that use color detection to identify their own team robot can detect objects that have the same color value, so objects that have the same color will be considered as their own team robot. However, if you only rely on this method, it is still lacking when viewed in terms of object tracking. Haar like feature or known as Haar Cascade Classifier is a rectangular (square) feature method, which gives a specific indication of an image. This method is able to detect quickly and in real time. Therefore, the researchers tried to unite these two detections to be able to produce a better detection system than before. It is hoped that hoped that in this study, researchers can provide input for the Robotics team of Dinamika Bangsa University in improving the accuracy of robot detection against robots in the same team. From the results of the study it was found that the detection of objects with a distance from the camera as far as 100 cm to 150 cm was successfully carried out, but with a distance of more than 150 cm the object was not detected.

References

I. A. Wicaksono, T. Winarno, and A. Komarudin, “Implementasi Kontrol PID Pada Gerakan Robot Line Follower Berkaki Menggunakan Sensor Kamera,†J. Elektron. dan Otomasi Ind., vol. 7, no. 3, p. 66, 2021, doi: 10.33795/elkolind.v7i3.209.

Ristekdikti, BUKU PANDUAN KONTES ROBOT SEPAKBOLA INDONESIA BERODA (KRSBI Beroda). 2018.

M. Elgendy, Deep Learning for Vision Systems, vol. 1, no. 1. 2020.

A. Sophokleous, P. Christodoulou, L. Doitsidis, and S. A. Chatzichristofis, “Computer vision meets educational robotics,†Electronics (Switzerland), vol. 10, no. 6. pp. 1–24, 2021, doi: 10.3390/electronics10060730.

I. K. S. Buana, “DETEKSI GERAKAN KEPALA DAN KEDIPAN MATA DENGAN HAAR CASCADE CLASSIFIER CONTOUR DAN MORFOLOGI DALAM PENGOPERASIAN KOMPUTER UNTUK KAUM DIFABLE,†JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 5, no. 1, pp. 29–36, 2019, doi: 10.33330/jurteksi.v5i1.273.

A. B. Shetty, Bhoomika, Deeksha, J. Rebeiro, and Ramyashree, “Facial recognition using Haar cascade and LBP classifiers,†Glob. Transitions Proc., vol. 2, no. 2, pp. 330–335, 2021, doi: 10.1016/j.gltp.2021.08.044.

A. Bahrudin, Jupriyadi, and Permata, “Optimasi Arsip Penyimpanan Dokumen Foto Menggunakan Algoritma Kompresi Deflate (Studi Kasus :Studio Muezzart),†J. Ilm. Infrastruktur Teknol. Inf., vol. 1, no. 2, pp. 14–18, 2020, doi: 10.33365/jiiti.v1i2.582.

A. Fahriannur and M. Siswanto, “Sistem Tracking Obyek Berbasis Algoritma Optical Flow Menggunakan Kamera Pan-Tilt,†Semin. Nas. Has. Penelit., pp. 175–178, 2017.

G. Oltean, C. Florea, R. Orghidan, and V. Oltean, “Towards Real Time Vehicle Counting using YOLO-Tiny and Fast Motion Estimation,†SIITME 2019 - 2019 IEEE 25th Int. Symp. Des. Technol. Electron. Packag. Proc., no. October, pp. 240–243, 2019, doi: 10.1109/SIITME47687.2019.8990708.

S. Brahmbhatt, Practical OpenCV. New York: Paul Manning, 2013.

S. Kelly, Python, PyGame and Raspberry Pi Game Development. 2016.

F. Rozi, H. Amnur, F. Fitriani, and P. Primawati, “Home Security Menggunakan Arduino Berbasis Internet Of Things,†INVOTEK J. Inov. Vokasional dan Teknol., vol. 18, no. 2, pp. 17–24, 2018, doi: 10.24036/invotek.v18i2.287.

N. Satrio Pambudi, D. M. Wiharta, and N. Putra Sastra, “ANALISA KESTABILAN GERAKAN STATIS PADA ROBOT HUMANOID,†J. SPEKTRUM, vol. 5, no. 2, p. 253, 2018, doi: 10.24843/spektrum.2018.v05.i02.p32.

M. Zulfikri, K. A. Latif, H. Hairani, A. Ahmad, R. Hammad, and M. Syahrir, “Deteksi dan Estimasi Kecepatan Kendaraan dalam Sistem Pengawasan Lalu Lintas Menggunakan Pengolahan Citra,†Techno.Com, vol. 20, no. 3, pp. 455–467, 2021, doi: 10.33633/tc.v20i3.4588.

G. Aprilian Anarki, K. Auliasari, and M. Orisa, “PENERAPAN METODE HAAR CASCADE PADA APLIKASI DETEKSI MASKER,†JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 1, pp. 179–186, 2021, doi: 10.36040/jati.v5i1.3214.

F. Utami, S. Suhendri, and M. Abdul Mujib, “Implementasi Algoritma Haar Cascade pada Aplikasi Pengenalan Wajah,†J. Inf. Technol., vol. 3, no. 1, pp. 33–38, 2021, doi: 10.47292/joint.v3i1.45.

I. Imanuddin, F. Alhadi, R. Oktafian, and A. Ihsan, “Deteksi Mata Mengantuk pada Pengemudi Mobil Menggunakan Metode Viola Jones,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 18, no. 2, pp. 321–329, 2019, doi: 10.30812/matrik.v18i2.389.

Hendry and R. C. Chen, “Using deep learning to predict user rating on imbalance classification data,†IAENG Int. J. Comput. Sci., vol. 46, no. 1, 2019.

F. Fachruddin, E. Rasywir, Hendrawan, Y. Pratama, D. Kisbianty, and M. R. Borroek, “Real Time Detection on Face Side Image with Ear Biometric Imaging Using Integral Image and Haar- Like Feature,†2018 Int. Conf. Electr. Eng. Comput. Sci., pp. 165–170, 2018.

A. Mahmudi, “DETEKSI SENJATA TAJAM DENGAN METODE HAAR CASCADE CLASSIFIER MENGGUNAKAN TEKNOLOGI SMS GATEWAY,†MATICS, vol. 1, no. 1, 2014, doi: 10.18860/mat.v1i1.2646.

Downloads

Published

2022-10-25