Implementation of K-Means and Agglomerative Hierarchical Methods to House Clusterization

Abdul Rozaq

Abstract


People in general will think that building a house with a larger building area will cost more than building a house with a smaller building area. This view is not always correct because one of the factors that affect the size of the cost depends on the size of the building and the ratio of the mixture between cement, sand and lime. The smaller the cement mixture for buildings, the smaller the costs will be. Based on this case, the researchers grouped the data (clustering) using Euclidean distance to measure the distance between points. Grouping 200 data based on 2 features, namely the amount of cement and the amount of costs that do not have a label. The results showed that clustering with the K-Means method was able to group 200 data into 3 groups with the results of group one as many as 50 data, group 2 as many as 50 data, group 3 as much as 100 data with a computation time of 0.444 seconds and silhouette 0.82 while the results of clustering research using the Agglomerative Hierarchical method with a single linkage shows 100 data in group 1,50 data in group 2, 50 data in group 3 with a computation time of 3.22 seconds and silhouette 0.51


Keywords


K-Means; Hierarchical; Agglomerative; Single Linkage; Silhouette

Full Text:

PDF

References


D. I. Pratama, “Analisis Anggaran Pelaksanaan Pembangunan Rumah Tinggal (Studi Kasus: Rumah Tipe 50/97 di Perumahan Dian Arta – Bangunjiwo, Bantul),†2018.

V. L. Deanggi, A. S. B. Nugroho, and F. Siswanto, “Pengaruh Biaya Prasarana, Sarana, Utilitas Dan Overhead Terhadap Biaya Produksi Unit Bangunan Pada Perumahan Mewah Di Yogyakarta,†INERSIA lNformasi dan Ekspose Has. Ris. Tek. SIpil dan Arsit., vol. 15, no. 2, pp. 72–83, 2019.

A. Halim, “Perbandingan kuat tekan dan kuat geser spesi tembok yang digunakan masyarakat,†vol. 20, no. 1, pp. 1–5, 2012.

K. Khomsatun, D. Ikhsan, M. Ali, and K. Kursini, “Sistem Pengambilan Keputusan Pemilihan Lahan Tanam Di Kabupaten Wonosobo Dengan K-Means Clustering Dan Topsis,†J. Nas. Pendidik. Tek. Inform., vol. 9, no. 1, p. 55, 2020.

G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,†J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019.

S. Handoko, F. Fauziah, and E. T. E. Handayani, “Implementasi Data Mining Untuk Menentukan Tingkat Penjualan Paket Data Telkomsel Menggunakan Metode K-Means Clustering,†J. Ilm. Teknol. dan Rekayasa, vol. 25, no. 1, pp. 76–88, 2020.

W. Afifi, D. R. Nastiti, and Q. Aini, “Clustering K-Means Pada Data Ekspor (Studi Kasus: Pt. Gaikindo),†Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 1, pp. 45–50, 2020.

G. Abdurrahman, “Clustering Data Kredit Bank Menggunakan Algoritma Agglomerative Hierarchical Clustering Average Linkage,†JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 4, no. 1, p. 13, 2019.

I. Rahma, P. Prima Arhandi, and A. Tufika Firdausi, “Penerapa Metode Hierarchical Clustering Dan K-Means Clustering Untuk Mengelompokkan Potensi Lokasi Penjualan Linkaja,†J. Inform. Polinema, vol. 6, no. 1, pp. 15–22, 2020.

W. Widyawati, W. L. Y. Saptomo, and Y. R. W. Utami, “Penerapan Agglomerative Hierarchical Clustering Untuk Segmentasi Pelanggan,†J. Ilm. SINUS, vol. 18, no. 1, p. 75, 2020.

E. Suherman, “Agglomerative Hierarchical Clustering Dengan Berbagai Pengukuran Jarak Dalam Mengklaster Daerah Berdasarkan Tingkat Kemiskinan,†vol. 5, no. 1, pp. 978–979, 2019.

Emi Ariska, “Implementasi Agglomerative Hierarchical Clustering Pada Data Produksi Dan Data Penjualan Perusahaan,†Universitas Sumatera Utara, 2018.

“Perbedaan Supervised Learning and Unsupervised Learning.†[Online]. Available: https://www.uc.ac.id/ict/perbedaan-supervised-learning-and-unsupervised-learning/.

R. Bonnin, Building machine learning projects with TensorFlow : engaging projects that will teach you how complex data can be exploited to gain the most insight. 2016.

S. F. Mu’afa and N. Ulinnuha, “Perbandingan Metode Single Linkage, Complete Linkage Dan Average Linkage dalam Pengelompokan Kecamatan Berdasarkan Variabel Jenis Ternak Kabupaten …,†… J. Ilm. Bid. Teknol. …, vol. 4, no. 2, 2019.

A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019,†J. Media Inform. Budidarma, vol. 4, no. 1, p. 51, 2020.

D. A. I. C. Dewi and D. A. K. Pramita, “Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,†Matrix J. Manaj. Teknol. dan Inform., vol. 9, no. 3, pp. 102–109, 2019.

M. A. Syakur, B. K. Khotimah, E. M. S. Rochman, and B. D. Satoto, “Integration K-Means Clustering Method and Elbow Method for Identification of the Best Customer Profile Cluster,†IOP Conf. Ser. Mater. Sci. Eng., vol. 336, no. 1, 2018.




DOI: https://doi.org/10.30865/mib.v6i2.3573

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.