Analisis Sentimen Terhadap Implementasi Program Merdeka Belajar Kampus Merdeka Menggunakan Naïve Bayes, K-Nearest Neighboars Dan Decision Tree
DOI:
https://doi.org/10.30865/mib.v6i2.3554Keywords:
Sentiment Analysis, Naïve Bayes, K-NN, Decision TreeAbstract
The development of technology are getting faster must be accompanied by the ability to adapt to changes from manual to digital, in the field of education. The Industrial internships, independent projects, student exchanges, community service projects, humanitarian initiatives, and other programs are part of the Merdeka Belajar - Kampus Merdeka program, which was launched by the Ministry of Education and Culture. The various of Merdeka Belajar -Kampus Merdeka program got a variety of responses from the public, including positive, negative, and neutral remarks posted on social media. The existence of these comments is able to create a growing sentiment among the general public and academics. Based on these problems, the researchers used twitter comments as a data source to conduct a sentiment analysis on the implementation of their Merdeka Belajar - Kampus Merdeka program. The data from Twitter will be categorized into positive, negative, and neutral classes using the Naïve Bayes method, K-Nearest Neighboars, and Decision Tree. There was a total of 475 data points divided into two groups: training data and testing data. The training data accounts for 80% of the entire data, while the remaining 20% is used for testing, with an accuracy of 99.22% for Naïve Bayes, 96.90% for K-Nearest Neighboars, and 37.21% for Decision.
References
D. F. Zhafira, B. Rahayudi, and I. Indriati, “Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube,†J. Sist. Informasi, Teknol. Informasi, dan Edukasi Sist. Inf., vol. 2, no. 1, pp. 55–63, 2021, doi: 10.25126/justsi.v2i1.24.
M. R. Baharuddin, “Adaptasi Kurikulum Merdeka Belajar Kampus Merdeka (Fokus: Model MBKM Program Studi),†J. Stud. Guru dan Pembelajaran, vol. 4, no. 1, pp. 195–205, 2021, [Online]. Available: https://www.e-journal.my.id/jsgp/article/view/591.
S. Supatmi, B. Herdiana, J. Utama, M. A. R. Pohan, and T. Rahajoeningroem, “Analisis Hasil Survei SPADA Dikti 2021 dan Dampaknya Terhadap Rekomendasi Kebijakan Implementasi Kampus Merdeka,†Edukatif J. Ilmu Pendidik., vol. 4, no. 1, pp. 732–746, 2022, [Online]. Available: https://doi.org/10.31004/edukatif.v4i1.1894.
E. Sulistiyani et al., “Implementasi Merdeka Belajar Kampus Merdeka ( MBKM ) pada Fakultas Kesehatan dan Non Kesehatan,†Edukatif J. Ilmu Pendidik., vol. 4, no. 1, pp. 686–698, 2022.
I. K. Suastika, V. Suwanti, R. D. Ferdiani, W. Harianto, U. Pgri, and K. Malang, “EDUKATIF : JURNAL ILMU PENDIDIKAN Analisis Kepuasan Stakeholder pada Implementasi Kurikulum MBKM Fakultas Sains dan Teknologi,†vol. 4, no. 2, pp. 1657–1667, 2022.
R. Puspitasari and R. Nugroho, “Implementasi Kebijakan Merdeka Belajar Kampus Merdeka FISIP UPN Veteran Jawa Timur,†J. Din. Gov., vol. 11, no. 2, pp. 276–292, 2021, [Online]. Available: http://ejournal.upnjatim.ac.id/index.php/jdg/article/view/2539.
R. Watrianthos, M. Giatman, W. Simatupang, R. Syafriyeti, and N. K. Daulay, “JURNAL MEDIA INFORMATIKA BUDIDARMA Analisis Sentimen Pembelajaran Campuran Pada Twitter Data Menggunakan Algoritma Naïve Bayes,†vol. 6, no. 1, pp. 166–170, 2022, doi: 10.30865/mib.v6i1.3383.
B. Gunawan, H. Sasty, P. #2, E. Esyudha, and P. #3, “JEPIN (Jurnal Edukasi dan Penelitian Informatika) Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,†vol. 4, no. 2, pp. 17–29, 2018, [Online]. Available: www.femaledaily.com.
E. Fitri, Y. Yuliani, S. Rosyida, and W. Gata, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,†TRANSFORMTIKA, vol. 18, no. 1, pp. 71–80, 2020, [Online]. Available: www.nusamandiri.ac.id,.
M. Saraswati and D. Riminarsih, “Analisis Sentimen Terhadap Pelayanan Krl Commuterline Berdasarkan Data Twitter Menggunakan Algortima Bernoulli Naive Bayes,†J. Ilm. Inform. Komput., vol. 25, no. 3, pp. 225–238, 2020, doi: 10.35760/ik.2020.v25i3.3256.
F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,†J. SIMETRIS, vol. 10, no. 2, 2019.
R. Wahyudi et al., “Analisis Sentimen pada review Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,†J. Inform., vol. 8, no. 2, 2021, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji.
N. Fitriyah, B. Warsito, D. Asih, and I. Maruddani, “Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (SVM),†J. GAUSSIAN, vol. 9, no. 3, pp. 376–390, 2020, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/.
U. Erdiansyah, A. I. Lubis, and K. Erwansyah, “Komparasi Metode K-Nearest Neighbor dan Random Forest Dalam Prediksi Akurasi Klasifikasi Pengobatan Penyakit Kutil,†vol. 6, pp. 208–214, 2022, doi: 10.30865/mib.v6i1.3373.
Y. Yunita, “Implementasi K-Nearest Neighbor Dalam Prediksi Mahasiswa Berhenti Kuliah,†J. Media Inform. Budidarma, vol. 5, no. 3, p. 866, 2021, doi: 10.30865/mib.v5i3.3049.
S. Y. Nursyi’ah, A. Erfina, and C. Warman, “Analisis Sentimen Pembelajaran Daring Pada Masa Pandemi Covid-19 Di Twitter Menggunakan Algoritma Naïve Bayes,†J. Media Inform. Budidarma, pp. 117–123, 2021.
I. Rukmana, A. Rasheda, F. Fathulhuda, M. R. Cahyadi, and F. Fitriyani, “Analisis Perbandingan Kinerja Algoritma Naïve Bayes, Decision Tree-J48 dan Lazy-IBK,†J. Media Inform. Budidarma, vol. 5, no. 3, p. 1038, 2021, doi: 10.30865/mib.v5i3.3055.
S. Silvilestari, “Data Mining Menggunakan Algoritma K-Nearest Neighbor Dalam Menentukan Kredit Macet Barang Elektronik,†J. Media Inform. Budidarma, vol. 5, no. 3, p. 1063, 2021, doi: 10.30865/mib.v5i3.3100.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).