Analisis Sentimen Gofood Berdasarkan Twitter Menggunakan Metode Naïve Bayes dan Support Vector Machine

Authors

  • Melati Indah Petiwi Universitas Nasional, Jakarta
  • Agung Triayudi Universitas Nasional, Jakarta
  • Ira Diana Sholihati Universitas Nasional, Jakarta

DOI:

https://doi.org/10.30865/mib.v6i1.3530

Keywords:

Covid-19, Gofood, Twitter, Naïve Bayes, Support Vector Machine

Abstract

The Covid-19 pandemic in Indonesia has an impact on every sector of life, including the economy. The government implements social activities that make people have to carry out activities at home. Because of this, humans choose to do everything digitally, including ordering food. With the application of public interest in ordering food online, the income of one of the food orders, namely Gojek (Gofood) has increased. However, Gofood has many pros and cons in the community. In this case, many people give their opinion about the use of social media, especially twitter. The purpose of this study was to analyze public opinion on the performance of Gojek (Gofood) in Indonesia. The grouping into three classes, namely positive, negative and neutral classes were tested using the Naïve Bayes and SVM methods and compared the two methods. The analysis of public sentiment regarding Gofood on Twitter resulted in 92.8% worthy neutral, 5.2% worthy positive and 2.0% worthy negative. Comparing the accuracy results, the Support Vector Machine method has greater accuracy than the Naïve Bayes method, with the Support Vector Machine accuracy values of 83% and 98.5%, while the Nave Bayes accuracy values are 74.6% and 91.5% respectively.

References

Q. Amalia, “Persepsi Konsumen Terhadap Faktor yang mempengaruhi Niat Menggunakan aplikasi Go-Food di Masa Pandemi COVID-19,†… Ind. Res. Work. Natl. Semin., pp. 4–5, 2021, [Online]. Available: https://jurnal.polban.ac.id/ojs-3.1.2/proceeding/article/view/2841/2220.

S. R. Pudjiastuti, , S., and N. Hadi, “the Effect of Corona Virus on the Global Climate,†Jhss (Journal Humanit. Soc. Stud., vol. 4, no. 2, pp. 130–136, 2020, doi: 10.33751/jhss.v4i2.2456.

Ratino, N. Hafidz, S. Anggraeni, and W. Gata, “Sentimen Analisis Informasi Covid-19 menggunakan Support Vector Machine dan Naïve Bayes,†J. JUPITER, vol. 12, no. 2, pp. 1–11, 2020.

M. M. Ikram, “Keputusan Penggunaan Layanan GoFood Selama Masa Pandemi Covid-19,†J. Ilm. Manaj. Kesatuan, vol. 9, no. 2, pp. 71–80, 2021, doi: 10.37641/jimkes.v9i2.467.

Nurbayti, “Tren Pengguna Aplikasi Go-Food di Era Digital (Studi Fenomenologi Pengguna Go-Food di Universitas Amikom Yogyakarta),†J. Komunikasi, Masy. dan Keamanan, vol. 1, no. 1, pp. 1–10, 2019.

M. W. A. Putra, Susanti, Erlin, and Herwin, “Analisis Sentimen Dompet Elektronik Pada Twitter Menggunakan Metode Naïve Bayes Classifier,†IT J. Res. Dev., vol. 5, no. 1, pp. 72–86, 2020, doi: 10.25299/itjrd.2020.vol5(1).5159.

D. A. Ramadhan and M. . , Erwin Budi Setiawan S.Si., “ANALISIS SENTIMEN PROGRAM ACARA DI SCTV PADA TWITTER MENGGUNAKAN METODE NAIVE BAYES DAN SUPPORT VECTOR MACHINE,†Semin. Nas. Teknol. Fak. Tek. Univ. Krisnadwipayana, vol. 1, no. 1, pp. 739–742, 2019, [Online]. Available: https://jurnal.teknikunkris.ac.id/index.php/semnastek2019/article/view/343/342.

E. Dwianto and M. Sadikin, “Analisis Sentimen Transportasi Online pada Twitter Menggunakan Metode Klasifikasi Naïve Bayes dan Support Vector Machine,†Format J. Ilm. Tek. Inform., vol. 10, no. 1, p. 94, 2021, doi: 10.22441/format.2021.v10.i1.009.

D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,†Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.

M. Tri Anjasmoros and dan Fitri Marisa, “Analisis Sentimen Aplikasi Go-Jek Menggunakan Metode Svm Dan Nbc (Studi Kasus: Komentar Pada Play Store),†Conf. Innov. Appl. Sci. Technol. (CIASTECH 2020), no. Ciastech, pp. 489–498, 2020.

H. Setiawan, E. Utami, and S. Sudarmawan, “Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes,†J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 43–51, 2021, doi: 10.31603/komtika.v5i1.5189.

E. S. Romaito, M. K. Anam, Rahmaddeni, and A. N. Ulfah, “Perbandingan Algoritma SVM Dan NBC Dalam Analisa Sentimen Pilkada Pada Twitter,†CSRID J., vol. 13, no. 3, pp. 169–179, 2021.

N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,†CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 293, 2020, doi: 10.24114/cess.v5i2.18186.

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),†J. Media Inform. Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.

A. Triayudi and W. O. Widyarto, “Comparison J48 and Naïve Bayes Methods in Educational Analysis,†J. Phys. Conf. Ser., vol. 1933, no. 1, pp. 15–20, 2021, doi: 10.1088/1742-6596/1933/1/012062.

F. Fitriana, E. Utami, and H. Al Fatta, “Analisis Sentimen Opini Terhadap Vaksin Covid - 19 pada Media Sosial Twitter Menggunakan Support Vector Machine dan Naive Bayes,†J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 19–25, 2021, doi: 10.31603/komtika.v5i1.5185.

R. Wati et al., “Analisis Sentimen Persepsi Publik Mengenai PPKM Pada Twitter Berbasis SVM Menggunakan Python,†vol. 06, pp. 240–247, 2021.

Downloads

Published

2022-01-25