Analisis Sentimen Gofood Berdasarkan Twitter Menggunakan Metode Naïve Bayes dan Support Vector Machine
DOI:
https://doi.org/10.30865/mib.v6i1.3530Keywords:
Covid-19, Gofood, Twitter, Naïve Bayes, Support Vector MachineAbstract
The Covid-19 pandemic in Indonesia has an impact on every sector of life, including the economy. The government implements social activities that make people have to carry out activities at home. Because of this, humans choose to do everything digitally, including ordering food. With the application of public interest in ordering food online, the income of one of the food orders, namely Gojek (Gofood) has increased. However, Gofood has many pros and cons in the community. In this case, many people give their opinion about the use of social media, especially twitter. The purpose of this study was to analyze public opinion on the performance of Gojek (Gofood) in Indonesia. The grouping into three classes, namely positive, negative and neutral classes were tested using the Naïve Bayes and SVM methods and compared the two methods. The analysis of public sentiment regarding Gofood on Twitter resulted in 92.8% worthy neutral, 5.2% worthy positive and 2.0% worthy negative. Comparing the accuracy results, the Support Vector Machine method has greater accuracy than the Naïve Bayes method, with the Support Vector Machine accuracy values of 83% and 98.5%, while the Nave Bayes accuracy values are 74.6% and 91.5% respectively.References
Q. Amalia, “Persepsi Konsumen Terhadap Faktor yang mempengaruhi Niat Menggunakan aplikasi Go-Food di Masa Pandemi COVID-19,†… Ind. Res. Work. Natl. Semin., pp. 4–5, 2021, [Online]. Available: https://jurnal.polban.ac.id/ojs-3.1.2/proceeding/article/view/2841/2220.
S. R. Pudjiastuti, , S., and N. Hadi, “the Effect of Corona Virus on the Global Climate,†Jhss (Journal Humanit. Soc. Stud., vol. 4, no. 2, pp. 130–136, 2020, doi: 10.33751/jhss.v4i2.2456.
Ratino, N. Hafidz, S. Anggraeni, and W. Gata, “Sentimen Analisis Informasi Covid-19 menggunakan Support Vector Machine dan Naïve Bayes,†J. JUPITER, vol. 12, no. 2, pp. 1–11, 2020.
M. M. Ikram, “Keputusan Penggunaan Layanan GoFood Selama Masa Pandemi Covid-19,†J. Ilm. Manaj. Kesatuan, vol. 9, no. 2, pp. 71–80, 2021, doi: 10.37641/jimkes.v9i2.467.
Nurbayti, “Tren Pengguna Aplikasi Go-Food di Era Digital (Studi Fenomenologi Pengguna Go-Food di Universitas Amikom Yogyakarta),†J. Komunikasi, Masy. dan Keamanan, vol. 1, no. 1, pp. 1–10, 2019.
M. W. A. Putra, Susanti, Erlin, and Herwin, “Analisis Sentimen Dompet Elektronik Pada Twitter Menggunakan Metode Naïve Bayes Classifier,†IT J. Res. Dev., vol. 5, no. 1, pp. 72–86, 2020, doi: 10.25299/itjrd.2020.vol5(1).5159.
D. A. Ramadhan and M. . , Erwin Budi Setiawan S.Si., “ANALISIS SENTIMEN PROGRAM ACARA DI SCTV PADA TWITTER MENGGUNAKAN METODE NAIVE BAYES DAN SUPPORT VECTOR MACHINE,†Semin. Nas. Teknol. Fak. Tek. Univ. Krisnadwipayana, vol. 1, no. 1, pp. 739–742, 2019, [Online]. Available: https://jurnal.teknikunkris.ac.id/index.php/semnastek2019/article/view/343/342.
E. Dwianto and M. Sadikin, “Analisis Sentimen Transportasi Online pada Twitter Menggunakan Metode Klasifikasi Naïve Bayes dan Support Vector Machine,†Format J. Ilm. Tek. Inform., vol. 10, no. 1, p. 94, 2021, doi: 10.22441/format.2021.v10.i1.009.
D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,†Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.
M. Tri Anjasmoros and dan Fitri Marisa, “Analisis Sentimen Aplikasi Go-Jek Menggunakan Metode Svm Dan Nbc (Studi Kasus: Komentar Pada Play Store),†Conf. Innov. Appl. Sci. Technol. (CIASTECH 2020), no. Ciastech, pp. 489–498, 2020.
H. Setiawan, E. Utami, and S. Sudarmawan, “Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes,†J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 43–51, 2021, doi: 10.31603/komtika.v5i1.5189.
E. S. Romaito, M. K. Anam, Rahmaddeni, and A. N. Ulfah, “Perbandingan Algoritma SVM Dan NBC Dalam Analisa Sentimen Pilkada Pada Twitter,†CSRID J., vol. 13, no. 3, pp. 169–179, 2021.
N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,†CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 293, 2020, doi: 10.24114/cess.v5i2.18186.
R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),†J. Media Inform. Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.
A. Triayudi and W. O. Widyarto, “Comparison J48 and Naïve Bayes Methods in Educational Analysis,†J. Phys. Conf. Ser., vol. 1933, no. 1, pp. 15–20, 2021, doi: 10.1088/1742-6596/1933/1/012062.
F. Fitriana, E. Utami, and H. Al Fatta, “Analisis Sentimen Opini Terhadap Vaksin Covid - 19 pada Media Sosial Twitter Menggunakan Support Vector Machine dan Naive Bayes,†J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 19–25, 2021, doi: 10.31603/komtika.v5i1.5185.
R. Wati et al., “Analisis Sentimen Persepsi Publik Mengenai PPKM Pada Twitter Berbasis SVM Menggunakan Python,†vol. 06, pp. 240–247, 2021.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).