Perbandingan Algoritma Regresi Linier dan Regresi Random Forest Dalam Memprediksi Kasus Positif Covid-19
DOI:
https://doi.org/10.30865/mib.v6i1.3492Keywords:
Covid 19, Machine Learning, Linear Regression, Random Forest Regression, RMSEAbstract
The world is in an uproar by a virus that was first reported in Wuhan, China. This virus is reported to have a very wide spread in a short time, so that it spread throughout the world. The World Health Organization (WHO) has designated Corona Virus Disease 2019 as a global pandemic. In a short time the Covid 19 virus immediately spread to all corners of the world, including Indonesia. As a result of the spread of COVID-19 which soared, there was a stir in the community. This situation affects many sectors of the nation's life. Therefore, the researchers conducted this study to find out how much data were affected, died, and recovered from Covid 19 and how to analyze linear regression and forest random regression. The results of the author's research resulted in an RMSE value of 4310,952 MAPE 19.9 and an accuracy rate of 91.4% in the Linear Regression algorithm while the Random Forest algorithm produced an RMSE value of 4342,481, MAPE 16.2 and an accuracy rate of 91.3%. So it can be said that in this research linear regression is slightly better than random forest.References
H. Setiawan, E. Utami, and S. Sudarmawan, “Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes,†J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 43–51, 2021, doi: 10.31603/komtika.v5i1.5189.
A. Ahmad Hania, “Mengenal Artificial Intelligence, Machine Learning, & Deep Learning,†J. Teknol. Indones., no. June, 2017, [Online]. Available: https://amt-it.com/mengenal-perbedaan-artificial-inteligence-machine-learning-deep-learning/.
A. Hijriani, K. Muludi, and E. A. Andini, “Penyajian Hasil Prediksi Pemakaian Air Bersih Pdam Informasi Geofrafis,†J. Inform., vol. 11, no. 2, pp. 37–42, 2016.
F. Komunikasi, U. M. Surakarta, J. A. Yani, and T. Pos, “Sistem Klasifikasi Variabel Tingkat Penerimaan Konsumen Terhadap Mobil Menggunakan Metode Random Forest,†J. Tek. Elektro, vol. 9, no. 1, pp. 24–29, 2017, doi: 10.15294/jte.v9i1.10452.
A. Triayudi and W. O. Widyarto, “Educational Data Mining Analysis Using Classification Techniques,†J. Phys. Conf. Ser., vol. 1933, no. 1, 2021, doi: 10.1088/1742-6596/1933/1/012061.
A. Botchkarev, “Performance Metrics (Error Measures) in Machine Learning Regression, Forecasting and Prognostics: Properties and Typology,†pp. 1–37, 2018, [Online]. Available: http://arxiv.org/abs/1809.03006.
B. Kriswantara, Kurniawati, and hilman f Pardede, “Prediksi Harga Mobil Bekas Dengan Machine Learning,†vol. 6, no. 5, p. 6, 2021.
K. Hastuti, “ANALISIS KOMPARASI ALGORITMA KLASIFIKASI DATA MINING UNTUK PREDIKSI MAHASISWA NON AKTIF,†Semin. Nas. Teknol. Inf. Komun. Terap. 2012, vol. 14, no. 1, pp. 241–249, 1994, doi: 10.2307/j.ctv11hppt6.3.
S. Dutalia, A. K. Lalo, P. Batarius, Y. Carmeneja, and H. Siki, “Implementasi Algoritma C4 . 5 Untuk Klasifikasi Penjualan,†vol. 06, no. April, pp. 1–12, 2021.
A. L. Fairuz, R. D. Ramadhani, and N. A. Tanjung, “Analisis Sentimen Masyarakat Terhadap COVID-19 Pada Media Sosial,†J. DINDA, vol. 1, no. 1, pp. 10–12, 2021, [Online]. Available: http://journal.ittelkom-pwt.ac.id/index.php/dinda/article/view/180.
L. Ainiyah and M. Bansori, “PREDIKSI JUMLAH KASUS COVID-19 MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE ( ARIMA ) ( STUDI KASUS KABUPATEN SIDOARJO ) FORECASTING COVID-19 CASES USING AUTOREGRESSIVE INTEGRATED MOVING AVERAGE ( ARIMA ) METHOD ( CASE FOR SIDOARJO REGENCY ,†vol. 10, no. 2, pp. 62–68, 2021.
F. Rio, R. Charlitos, and S. Thang, “Analisa Prediksi Angka Kesembuhan Covid-19 Pada,†J. Digit. Ecosyst. Nat. Sustain., vol. 1, no. 1, pp. 25–28, 2021, [Online]. Available: http://journal.uvers2.ac.id/index.php/jodens/article/view/22/12.
J. Felix, N. Santoso, A. Setiawan, S. Rostianingsih, and J. S. Surabaya, “Perbandingan dan Analisis Metode Artificial Neural Network dan SIRD pada Kasus Covid-19 di Surabaya,†2020.
I. G. B. Ngurah Diksa, “Peramalan Gelombang Covid 19 Menggunakan Hybrid Nonlinear Regression Logistic – Double Exponential Smoothing di Indonesia dan Prancis,†Jambura J. Math., vol. 3, no. 1, pp. 37–51, 2021, doi: 10.34312/jjom.v3i1.7771.
L. Widyarsi et al., “Prediksi Kasus Covid-19 Melalui Analisis Data Google Trend Di Indonesia : Pendekatan Metode Long Short Term Memory (LSTM),†J. SAINTIKA UNPAM J. Sains dan Mat. Unpam, vol. 3, no. 2, pp. 161–177, 2021.
S. Rong and Z. Bao-Wen, “The research of regression model in machine learning field,†MATEC Web Conf., vol. 176, pp. 8–11, 2018, doi: 10.1051/matecconf/201817601033.
A. A. Suryanto, “Penerapan Metode Mean Absolute Error (Mea) Dalam Algoritma Regresi Linear Untuk Prediksi Produksi Padi,†Saintekbu, vol. 11, no. 1, pp. 78–83, 2019, doi: 10.32764/saintekbu.v11i1.298.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).