Evaluasi Kinerja Karyawan Kontrak Menggunalan Metode Fuzzy Tsukamoto
DOI:
https://doi.org/10.30865/mib.v6i1.3441Keywords:
Fuzzy, Tsukamoto, Employee EvaluationAbstract
Contract employees are employees who work in contact with a certain time agreement. However, there are times when contact employees with good performance will change their status to permanent employees. To determine whether an employee is a permanent employee, an evaluation of whether the employee's performance is worthy of being appointed as a permanent employee is required. However, to carry out this evaluation, a variable is needed to make an assessment. In the performance evaluation it is not easy to determine the value of each variable. To assist an HRD in determining the appointment of a contact employee to become a permanent employee, a decision support system is needed to facilitate HRD work. The decision support system is made using the Tsukamoto fuzzy logic method because the Tsukamoto fuzzy has a tolerance for value data. The result of the research is that the employee can be appointed as a permanent employee with a value of 93.4. The purpose of this decision support system is to determine whether or not contract employees are eligible to become permanent employees based on alternative disciplines, ways of working and behavior.References
M. Angeline, “Sistem Pendukung Keputusan Pemilihan Karyawan Terbaik Menggunakan Metode Profile Matching,†J. Ilm. Smart, vol. 2, no. 2, pp. 45–51, 2018.
F. Frieyadie, “Penggunaan Metode Profile Matching Untuk Sistem Penunjang Keputusan Kenaikan Jabatan Pada Instansi Pemerintah,†Paradig. Komput. dan Inform., vol. 18, no. 2, pp. 75–80, 2016.
A. Z. Rakhman, H. N. Wulandari, G. Maheswara, and S. Kusumadewi, “Fuzzy Inference System Dengan Metode Tsukamoto Sebagai Pemberi Saran Pemilihan Konsentrasi (Studi Kasus: Jurusan Teknik Informatika Uii),†2012.
D. Selywita, “Sistem Pendukung Keputusan Pemilihan Supplier Obat Menggunakan Metode Fuzzy Tsukamoto,†Sisfotenika, vol. 3, no. 1, pp. 21–30, 2013.
M. Maryaningsih, S. Siswanto, and M. Mesterjon, “Metode Logika Fuzzy Tsukamoto Dalam Sistem Pengambilan Keputusan Penerimaan Beasiswa,†J. Media Infotama, vol. 9, no. 1, 2013.
F. R. Ansori, “Klasifikasi Penerimaan Beasiswa Dengan Menggunakan Logika Fuzzy Tsukamoto (Studi Kasus Politeknik Kesehatan Kementrian Kesehatan Semarang),†Tek. Inform. Ilmu Komput., vol. 1, pp. 1–9, 2014.
N. I. Kurniati, R. R. El Akbar, and P. Wijaksono, “Penerapan metode fuzzy tsukamoto pada sistem pakar untuk mendiagnosa autisme pada anak,†Innov. Res. Informatics, vol. 1, no. 1, 2019.
R. Siregar, M. Zarlis, and Z. Situmorang, “Tsukamoto’s Fuzzy Logic Development Analysis to Predict Caesarean or Normal Delivery,†in 2020 3rd International Conference on Mechanical, Electronics, Computer, and Industrial Technology (MECnIT), 2020, pp. 152–157.
H. N. Hadi and W. F. Mahmudy, “Penilaian Prestasi Kinerja Pegawai Menggunakan Fuzzy Tsukamoto,†J. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 1, pp. 41–48, 2015.
N. Nurjannah, Z. Arifin, and D. M. Khairina, “Sistem pendukung keputusan pembelian sepeda motor dengan metode weighted product,†J. Inform. Mulawarman, vol. 10, no. 2, pp. 2–6, 2015.
D. C. Oktavia, K. Aeni, and N. M. Saraswati, “SISTEM PENDUKUNG KEPUTUSAN MENU MAKANAN UNTUK PENDERITA PENYAKIT TIPES DAN DIABETES MENGGUNAKAN METODE TECHNIQUE FOR ORDER PREFERENCE BY SIMILARITY TO IDEAL SOLUTION (TOPSIS)(Studi Kasus: RSUM SA),†Indones. J. Informatics Res., vol. 1, no. 1, pp. 8–13, 2020.
R. A. B. SPK, “Sistem Pendukung Keputusan Berbasis Client Server untuk Penentuan Biaya Pembangunan Rumah (Studi Kasus pada PT Buana Nata Loka),†2011.
R. Yunitarini, “Sistem Pendukung Keputusan Pemilihan Penyiar Radio Terbaik,†J. Mikrotek, vol. 1, no. 1, pp. 43–52, 2013.
H. Anwar, “Proses pengambilan keputusan untuk mengembangkan mutu madrasah,†Nadwa, vol. 8, no. 1, pp. 37–56, 2014.
A. S. Omar, M. Waweru, and R. Rimiru, “A literature survey: Fuzzy logic and qualitative performance evaluation of supply chain management,†Int. J. Engineeirng Sci., vol. 4, no. 5, pp. 56–63, 2015.
F. Ariani and R. Y. Endra, “Implementation of fuzzy inference system with Tsukamoto method for study programme selection,†2013.
I. Wahyuni, W. F. Mahmudy, and A. Iriany, “Rainfall prediction in Tengger region Indonesia using Tsukamoto fuzzy inference system,†in 2016 1st International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 2016, pp. 130–135.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).