Perbandingan Algoritma Stochastic Gradient Descent dan Naïve Bayes Pada Klasifikasi Diabetic Retinopathy
DOI:
https://doi.org/10.30865/mib.v6i1.3426Keywords:
Classification, Stochastic Gradient Descent, Naïve Bayes, Diabetic Retinopathy, Cross ValidationAbstract
The purpose of this research is to compare the performance of the Stochastic Gradient Descent and Naïve Bayes algorithms in classifying Diabetic Retinopathy. Diabetic retinopathy is a complication of diabetes that causes damage to the retina of the eye. These disturbances can be detected by early detection through data extracted from eye images. This research uses source data from the UCI Machine Learning Repository, namely Diabetic Retinopathy Debrecen, totaling 1,151 data records with 19 attributes consisting of 18 attributes and 1 target attribute. The validation test uses the Cross Validation method with a total of 10 k. From the comparison of the two proposed methods, the Stochastic Gradient Descent algorithm produces an average test accuracy of 70.16%, while Naïve Bayes produces an average accuracy of 56.74%. From the comparison of the two algorithms, the Stochastic Gradient Descent algorithm is known to be superior in classifying the Diabetic Retinopathy Debrecen Dataset.References
M. E. Al Rivan, S. Steven, and W. Tanzil, “Optimasi Fuzzy C-Means dan K-Means Menggunakan Algoritma Genetika untuk Pengklasteran Dataset Diabetic Retinopathy,†Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 5, p. 993, 2020, doi: 10.25126/jtiik.2020711872.
P. Subarkah, “Penerapan Algoritme Klasifikasi Classification And Regression Trees (Cart) Untuk Diagnosis Penyakit Diabetes Retinopathy,†MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 19, no. 2, pp. 294–301, 2020, doi: 10.30812/matrik.v19i2.676.
R. Tyasnurita and A. Y. M. Pamungkas, “Deteksi Diabetik Retinopati menggunakan Regresi Logistik,†ILKOM Jurnal Ilmiah, vol. 12, no. 2, pp. 130–135, 2020, doi: 10.33096/ilkom.v12i2.578.130-135.
R. T. Prasetio, “Genetic Algorithm to Optimize k-Nearest Neighbor Parameter for Benchmarked Medical Datasets Classification,†Jurnal Online Informatika, vol. 5, no. 2, p. 153, 2020, doi: 10.15575/join.v5i2.656.
M. Bahrami and H. Sajedi, “Prediction of diabetic retinopathy based on a committee of random forests,†International Journal of Intelligent Machines and Robotics, vol. 1, no. 2, p. 133, 2018, doi: 10.1504/ijimr.2018.10016284.
L. Heryawan, “Deteksi Dini Retinopati Diabetik dengan Pengolahan Citra Berbasis Morfologi Matematika,†IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 11, no. 2, p. 209, 2017, doi: 10.22146/ijccs.24761.
P. Subarkah, M. M. Abdallah, and S. O. N. Hidayah, “Komparasi Akurasi Algoritme CART Dan Neural Network Untuk Diagnosis Penyakit Diabetes Retinopathy,†CogITo Smart Journal, vol. 7, no. 1, p. 121, 2021, doi: 10.31154/cogito.v7i1.304.121-134.
W. B. Zulfikar and N. Lukman, “Perbandingan Naive Bayes Classifier Dengan Nearest Neighbor Untuk Identifikasi Penyakit Mata,†Jurnal Online Informatika, vol. 1, no. 2, pp. 82–86, 2016, doi: 10.15575/join.v1i2.33.
R. Umar, I. Riadi, and P. Purwono, “Klasifikasi Kinerja Programmer pada Aktivitas Media Sosial dengan Metode Support Vector Machines,†Cybernetics, vol. 4, no. 01, p. 32, 2020, doi: 10.29406/cbn.v4i01.2042.
N. G. Ramadhan and A. Khoirunnisa, “Klasifikasi Data Malaria Menggunakan Metode Support Vector Machine,†vol. 5, pp. 1580–1584, 2021, doi: 10.30865/mib.v5i4.3347.
R. A. Wijayanti, M. T. Furqon, and S. Adinugroho, “Penerapan Algoritme Support Vector Machine Terhadap Klasifikasi Tingkat Risiko Pasien Gagal Ginjal,†Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, vol. 2, no. 10, pp. 3500–3507, 2018, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/2647/991/.
T. T. Wong, “Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation,†Pattern Recognition, vol. 48, no. 9, pp. 2839–2846, 2015, doi: 10.1016/j.patcog.2015.03.009.
S. Widodo, “DETEKSI COVID-19 PADA CITRA CT-SCAN MENGGUNAKAN ALEXNET DAN STOCHASTIC GRADIENT DESCENT DENGAN,†Prosiding Seminar Informasi Kesehatan Nasional (SIKesNas), vol. 2, pp. 241–251, 2019.
S. G. Descent, “DETEKSI SMS SPAM BERBAHASA INDONESIA MENGGUNAKAN TF-IDF DAN STOCHASTIC GRADIENT DESCENT CLASSIFIER ( Indonesian SMS Spam Detection using TF-IDF and Stochastic Gradient Descent,†vol. 3, no. 2, pp. 200–207, 2021.
V. Sari, F. Firdausi, and Y. Azhar, “Perbandingan Prediksi Kualitas Kopi Arabika dengan Menggunakan Algoritma SGD, Random Forest dan Naive Bayes,†Edumatic: Jurnal Pendidikan Informatika, vol. 4, no. 2, pp. 1–9, 2020, doi: 10.29408/edumatic.v4i2.2202.
A. Budianita and F. I. Pratama, “Penerapan Algoritma Klasifikasi Dengan Fitur Seleksi Weight By Information Gain Pada Pemodelan Prediksi Kelulusan Mahasiswa,†Infotekmesin, vol. 11, no. 2, pp. 80–86, 2020, doi: 10.35970/infotekmesin.v11i2.255.
H. Göker, H. I. Bülbül, and E. Irmak, “The estimation of students’ academic success by data mining methods,†Proceedings - 2013 12th International Conference on Machine Learning and Applications, ICMLA 2013, vol. 2, pp. 535–539, 2013, doi: 10.1109/ICMLA.2013.173.
R. Satria, “Integrasi Bagging dan Greedy Forward Selection pada Prediksi Cacat Software dengan Menggunakan Naive Bayes,†IlmuKomputer.com Journal of Software Engineering, vol. 1, no. 2, pp. 101–108, 2015.
A. Mukminin and D. Riana, “Komparasi Algoritma C4 . 5 , Naïve Bayes Dan Neural Network Untuk Klasifikasi Tanah,†Jurnal Informatika, vol. 4, no. 1, pp. 21–31, 2017, [Online]. Available: https://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/1002.
M. A. Maricar and Dian Pramana, “Perbandingan Akurasi Naïve Bayes dan K-Nearest Neighbor pada Klasifikasi untuk Meramalkan Status Pekerjaan Alumni ITB STIKOM Bali,†Jurnal Sistem dan Informatika (JSI), vol. 14, no. 1, pp. 16–22, 2019, doi: 10.30864/jsi.v14i1.233.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).