Komparasi Metode K-Nearest Neighbor dan Random Forest Dalam Prediksi Akurasi Klasifikasi Pengobatan Penyakit Kutil
DOI:
https://doi.org/10.30865/mib.v6i1.3373Keywords:
Classification, Wart Disease, K-Nearest Neighbor, Random ForestAbstract
Warts are a skin health problem, usually characterized by small, rough bumps on the surface of the skin caused by a virus, known as the human papillomavirus (HPV). The common way of treating warts is with immunotherapy, which is the treatment of warts by strengthening the body's immune system. In the process of predicting and diagnosing warts, it can be done by applying Machine Learning. This study focuses on the comparison of the K-Nearest Neighbor classification method with Random Forest to see the level of accuracy in predicting the success of the treatment of warts. Data for Immunotheraphy was obtained from the UCI Machine Learning Repository with a total of 90 data records, 7 attributes and 1 attribute class. Based on the results of testing the K-Nearest Neighbor and Random Forest methods to see the accuracy of the prediction of the success of the data being tested, the results obtained are the accuracy of the KNN method of 90.00% and the Random Forest method with an accuracy of 85.50%. From the results obtained from the tests that have been carried out, it is known that the Random Forest method is a better method than K-Nearest Neighbor in predicting accuracy in the Immunotheraphy Dataset.References
A. Fazriansyah, M. A. Azis, and Y. Yudhistira, “Analysis of Neural Network Classification Algorithm To Know the Success Level of Immunotherapy,†Jurnal Techno Nusa Mandiri, vol. 17, no. 1, pp. 57–62, 2020, doi: 10.33480/techno.v17i1.1089.
F. Fitriyani and T. Arifin, “Implementasi Greedy Forward Selection untuk Prediksi Metode Penyakit Kutil Menggunakan Decision Tree,†JST (Jurnal Sains dan Teknologi), vol. 9, no. 1, pp. 76–85, 2020, doi: 10.23887/jst-undiksha.v9i1.24896.
H. Sa, F. Indriani, D. T. Nugrahadi, J. A. Yani, K. Banjarbaru, and K. Selatan, “Metode Naive Bayes Gaussian Dalam Pemilihan Pengobatan Kutil ( Immunotherapy Dan,†Seminar Nasional Ilmu Komputer (SOLITER), vol. 2, pp. 24–36, 2019.
F. L. D. Cahyanti, W. Gata, and F. Sarasati, “Implementasi Algoritma Naïve Bayes dan K-Nearest Neighbor Dalam Menentukan Tingkat Keberhasilan Immunotherapy Untuk Pengobatan Penyakit Kanker Kulit,†Jurnal Ilmiah Universitas Batanghari Jambi, vol. 21, no. 1, p. 259, 2021, doi: 10.33087/jiubj.v21i1.1189.
F. Y. Pamuji and V. P. Ramadhan, “Komparasi Algoritma Random Forest dan Decision Tree untuk Memprediksi Keberhasilan Immunotheraphy,†Jurnal Teknologi dan Manajemen Informatika, vol. 7, no. 1, pp. 46–50, 2021, doi: 10.26905/jtmi.v7i1.5982.
O. P. Barus and T. Sanjaya, “Prediksi Tingkat Keberhasilan Pengobatan Kanker Menggunakan Imunoterapi Dengan Metode Naive Bayes,†Information System Development (ISD), vol. 5, no. 1, pp. 1–6, 2020.
T. Arifin and S. Syalwah, “Prediksi Keberhasilan Immunotherapy Pada Penyakit Kutil Dengan Menggunakan Algoritma Naïve Bayes,†Jurnal Responsif, vol. 2, no. 1, pp. 38–43, 2020.
J. L. Putra and M. Raharjo, “Penerapan Neural Network Dalam Menentukan Tingkat Keberhasilan Immunotherapy,†IJCIT (Indonesian Journal on Computer and Information Technology), vol. 4, no. 2, pp. 132–136, 2019, doi: 10.31294/ijcit.v4i2.6242.
F. Khozeimeh, R. Alizadehsani, M. Roshanzamir, A. Khosravi, P. Layegh, and S. Nahavandi, “An expert system for selecting wart treatment method,†Computers in Biology and Medicine, vol. 81, no. January, pp. 167–175, 2017, doi: 10.1016/j.compbiomed.2017.01.001.
F. Khozeimeh et al., “Intralesional immunotherapy compared to cryotherapy in the treatment of warts,†International Journal of Dermatology, vol. 56, no. 4, pp. 474–478, 2017, doi: 10.1111/ijd.13535.
M. Kuhkan, “A Method to Improve the Accuracy of K-Nearest Neighbor Algorithm,†International Journal of Computer Engineering and Information Technology, vol. 8, no. 6, pp. 90–95, 2016, [Online]. Available: www.ijceit.org.
A. Moosavian, H. Ahmadi, A. Tabatabaeefar, and M. Khazaee, “Comparison of two classifiers; K-nearest neighbor and artificial neural network, for fault diagnosis on a main engine journal-bearing,†Shock and Vibration, vol. 20, no. 2, pp. 263–272, 2013, doi: 10.3233/SAV-2012-00742.
N. Khasanah, R. Komarudin, N. Afni, Y. I. Maulana, and A. Salim, “Skin Cancer Classification Using Random Forest Algorithm,†Sisfotenika, vol. 11, no. 2, p. 137, 2021, doi: 10.30700/jst.v11i2.1122.
S. Devella, Y. Yohannes, and F. N. Rahmawati, “Implementasi Random Forest Untuk Klasifikasi Motif Songket Palembang Berdasarkan SIFT,†JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 7, no. 2, pp. 310–320, 2020, doi: 10.35957/jatisi.v7i2.289.
V. W. Siburian and I. E. Mulyana, “Prediksi Harga Ponsel Menggunakan Metode Random Forest,†Prosiding Annual Research Seminar, vol. 4, no. 1, pp. 144–147, 2018.
T. Arifin and D. Ariesta, “Prediksi Penyakit Ginjal Kronis Menggunakan Algoritma Naive Bayes Classifier Berbasis Particle Swarm Optimization,†Jurnal Tekno Insentif, vol. 13, no. 1, pp. 26–30, 2019, doi: 10.36787/jti.v13i1.97.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,†Jurnal Sains Komputer & Informatika (J-Sakti), vol. 5, no. 2, pp. 697–711, 2021.
R. K. Dinata, S. Safwandi, N. Hasdyna, and N. Azizah, “Analisis K-Means Clustering pada Data Sepeda Motor,†INFORMAL: Informatics Journal, vol. 5, no. 1, p. 10, 2020, doi: 10.19184/isj.v5i1.17071.
R. A. Wijayanti, M. T. Furqon, and S. Adinugroho, “Penerapan Algoritme Support Vector Machine Terhadap Klasifikasi Tingkat Risiko Pasien Gagal Ginjal,†Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, vol. 2, no. 10, pp. 3500–3507, 2018, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/2647/991/.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).