Penerapan Apriori Hybrid Pada Transaksi Penjualan Barang
DOI:
https://doi.org/10.30865/mib.v5i4.3350Keywords:
Data Mining, Association Rule, Hybrid AprioriAbstract
Ayu Nadi Swalayan is a retail company that produces a lot of every day sales transaction data, and it is stored for years without knowing the benefits and the placement of the goods is still random. From these problems, an effort is needed to process the data so the data is useful in the future. One of the process is using data mining techniques with apriori hybrid algorithm to find association rules for an items combination. Data product sale in a certain period is used to find the association rules. The results of this study are the development of applications that are used to determine consumer spending habits. So that the company can develop a strategy to promote the product sale and close placement for items that are often purchased together. The application testing found the effect of minimum support, minimum confidence on the number of rules, and lift ratio testing. The smaller the minimum support and minimum confidence, the more rules are generated and vice versa. The lift ratio value is directly proportional to the minimum confidence value and inversely proportional to the minimum support value. The higher the minimum confidence value, the higher the lift ratio value and vice versa. The more items in the transaction cause the minimum support threshold to be lowered in order to generate rules for the data analysis process with the hybrid apriori algorithmReferences
T. Thi Bi Dan, S. Widya Sihwi, and R. Anggrainingsih, “Implementasi Iterative Dichotomiser 3 Pada Data Kelulusan Mahasiswa S1 Di Universitas Sebelas Maret,†J. Teknol. Inf. ITSmart, vol. 4, no. 2, p. 84, 2016, doi: 10.20961/its.v4i2.1770.
A. K. Hernawan and S. Lorena, “Aplikasi Data Mining Menggunakan Naive Bayes Classifier Untuk Persetujuan Pengajuan Kredit,†Univ. Komput. Indones. Bandung, pp. 1–6, 2015.
S. Ardian and U. Budi, Data Mining dan Big Data Analitycs Teori dan Implementasi Python & Apache Spark, Edisi 2. Penebar Media Pustaka, 2018.
D. Astika, P. Studi, T. Informatika, and U. Malikussaleh, “Penerapan Data Mining Untuk Menganalisis Penjualan Barang Dengan Pada Supermarket Sejahtera,†Astik. D., Stud. P., Inform. T., Malikussaleh, U. (n.d.). PENERAPAN DATA Min. UNTUK MENGANALISIS PENJUALAN BARANG DENGAN PADA Supermark. SEJAHTERA., 2017.
A. Wanto and dkk, Data Mining : Algoritma dan Implementasi. Yayasan Kita Menulis, 2020.
P. Prithiviraj and R. Porkodi, “A Comparative Analysis of Association Rule Mining Algorithms in Data Mining: A Study,†Open J. Comput. Sci. Eng. Surv., vol. 3, no. 1, pp. 98–119, 2015.
K. Khurana, “A Comparative Analysis of Association Rules Mining,†vol. 3, no. 5, pp. 3–6, 2013.
Mulyadi, Sistem Informasi Akuntansi. 2008.
K. B. Nugroho, “Pengembangan Data Warehouse Penerimaan Mahasiswa Baru Untuk Informasi Strategik Pada Universitas BSI,†J. Kaji. Ilm., vol. 18, no. 2, p. 168, 2018, doi: 10.31599/jki.v18i2.293.
K. Haryono, “Penerapan data warehouse dalam pengelolaan sistem keuangan daerah,†J. Warehous., vol. 1, pp. 1–9, 2005.
O. Colhoun, “Data Warehouse,†vol. 8, no. 1, pp. 656–656, 2019, doi: 10.1007/978-3-662-48986-4_826.
Q. Aini, U. Rahardja, A. Moeins, and A. M. Wardani, “Penerapan Data Market Query (DMQ) pada Sistem Penilaian Berbasis Yii Framework,†InfoTekJar (Jurnal Nas. Inform. dan Teknol. Jaringan), vol. 3, no. 1, pp. 26–31, 2018, doi: 10.30743/infotekjar.v3i1.565.
V. N. Budiyasari, P. Studi, T. Informatika, F. Teknik, U. Nusantara, and P. Kediri, “Implementasi Data Mining Pada Penjualan kacamata Dengan Menggunakan Algoritma Apriori,†Indones. J. Comput. Inf. Technol., vol. 2, no. 2, pp. 31–39, 2017.
A. M. Siregar and M. Syahrizal, “Implementasi Algoritma Apriori Tid Untuk Mengetahui Pola Penjualan Keramik,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, 2019, doi: 10.30865/komik.v3i1.1572.
A. Maulana and A. A. Fajrin, “Penerapan Data Mining Untuk Analisis Pola Pembelian Konsumen Dengan Algoritma Fp-Growth Pada Data Transaksi Penjualan Spare Part Motor,†Klik - Kumpul. J. Ilmu Komput., vol. 5, no. 1, p. 27, 2018, doi: 10.20527/klik.v5i1.100.
D. Nofriansyah, Konsep Data Mining Vs Sistem Pendukung Keputusan, 1st ed. Yogyakarta: Deepubllish, 2014.
G. A. Saputro, “Penerapan Algoritma Apriori Untuk Mencari Pola Penjualan Di Cafe Studi Kasus Jurney Coffee,†2017.
N. Adha, L. T. Sianturi, and E. R. Siagian, “IMPLEMENTASI DATA MINING PENJUALAN SABUN DENGAN MENGGUNAKAN METODE APRIORI ( Studi Kasus : PT. Unilever),†Maj. Ilm. INTI, vol. 12, no. 2, pp. 219–223, 2017.
F. Nurchalifatun, “Penerapan Metode Asosiasi Data Mining Menggunakan Algoritma Apriori Untuk Mengetahui Kombinasi Antar Itemset Pada Pondok Kopi,†Data Min., 2015.
B. R. Agarwal, R. Srikant, and M. A. Ahmad, “Fast Algorithms For Mining Association Rules In Datamining,†Int. J. Sci. Technol. Res., vol. 2, no. 12, pp. 13–24, 2013.
D. Listriani, A. H. Setyaningrum, and F. Eka, “PENERAPAN METODE ASOSIASI MENGGUNAKAN ALGORITMA APRIORI PADA APLIKASI ANALISA POLA BELANJA KONSUMEN (Studi Kasus Toko Buku Gramedia Bintaro),†J. Tek. Inform., vol. 9, no. 2, pp. 120–127, 2018, doi: 10.15408/jti.v9i2.5602.
D. Fitriati, “Implementasi Data Mining untuk Menentukan Kombinasi Media Promosi Barang Berdasarkan Perilaku Pembelian Pelanggan Menggunakan Algoritma Apriori,†Pros. Annu. Res. Semin. 2016, vol. 2, no. 1, pp. 472–480, 2016, doi: 979-587-626-0.
M. Fauzy, K. R. Saleh W, and I. Asror, “Penerapan Metode Association Rule Menggunakan,†J. Ilm. Teknol. Inf. Terap., vol. II, no. 2, pp. 221–227, 2016.
M. Silalahi, “Perbandingan Performansi Database Mongodb Dan Mysql Dalam Aplikasi File Multimedia Berbasis Web,†Comput. Based Inf. Syst. J., vol. 6, no. 1, p. 63, 2018, doi: 10.33884/cbis.v6i1.574.
A. Junaidi, “Studi Perbandingan Performansi Antar Mongodb Dan Mysql Menggunakan Php Dalam Lingkungan Big Data,†Pros. Annu. Res. Semin. 2016, vol. 2, no. 1, pp. 460–465, 2016.
N. Nurrohman, M. C. Aruan, and A. Rahadyan, “Sistem Informasi Koperasi Simpan Pinjam pada PT Meiwa Indonesia Berbasis Java Desktop,†J. Inform. Univ. Pamulang, vol. 5, no. 3, pp. 408–414, 2020, doi: http://dx.doi.org/10.32493/informatika.v5i3.5823.
T. B. Setyawan, “Penerima Beasiswa Dengan Metode Simple Additive Weighting Berbasis Java Desktop Application,†2015.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).