Perancangan Aplikasi Fuzzy Logic Untuk Prediksi Kasus Positif Covid-19 Menggunakan Metode Tsukamoto

Authors

  • Vani Maharani Nasution Universitas Informatika dan Bisnis Indonesia, Bandung
  • Graha Prakarsa Universitas Informatika dan Bisnis Indonesia, Bandung

DOI:

https://doi.org/10.30865/mib.v5i4.3338

Keywords:

Fuzzy, Tsukamoto, Prediction, Covid-19, Corona

Abstract

COVID-19 is a virus that attacks the respiratory system which was first discovered in the Chinese city of Wuhan. This virus spreads very quickly and spreads throughout the world, including Indonesia. West Java is the province with the most positive cases of COVID-19, on May 4, 2020, 193 positive cases were added, and on 28 June 2020 there were 1,396 confirmed cases with an additional 18 patients. The unpredictable increase in positive cases of COVID-19 has led to the unpreparedness of officers in handling this outbreak. The West Java Provincial Health Office acknowledged the lack of Covid-19 handling facilities in 52 regional general hospitals in West Java Province to monitor positive COVID-19 patients, one of which was the lack of isolation rooms. In addition, the quality of the isolation room and personal protective equipment does not meet the standards. Predicting an increase or decrease in cases of positive COVID-19 patients needs to be done, so that there is readiness from the task force team for COVID-19 to deal with the problem of lack of facilities including isolation rooms and personal protective equipment. Fuzzy logic is one of the derivatives of artificial intelligence that is able to predict something. The research was conducted using the fuzzy logic of the Tsukamoto method through several stages including fuzzification, formation of rules, inference, and defuzzification. The results showed an error rate of 4.5% which indicated that predicting covid-19 using the fuzzy logic of the Tsukamoto method showed a high success rate

References

L. A. Abdillah, “Stigma Terhadap Orang Positif COVID-19.â€

N. Novita, “Metode Fuzzy Tsukamoto Untuk Menentukan Beasiswa,†J. Penelit. Tek. Inform. Vol. 1 Nomor 1, Oktober 2016, vol. 1, pp. 51–54, 2016, doi: 2541-2019.

S. Suseno and S. H. Wibowo, “Penentuan Kapasitas Produksi Menggunakan Metode Fuzzy Inference System-Tsukamoto,†J. Rekayasa Ind., vol. 1, no. 1, 2019, doi: 10.37631/jri.v1i1.59.

S. . Kusumadewi and H. Purnomo, Aplikasi Logika Fuzzy Pendukung Keputusan (2nd ed.). 2010.

S. K. Dirjen, P. Riset, D. Pengembangan, R. Dikti, G. Prakarsa, and V. M. Nasution, “Terakreditasi SINTA Peringkat 2 Pengembangan Sistem Pendukung Keputusan Menggunakan Metode Tsukamoto,†masa berlaku mulai, vol. 1, no. 3, pp. 414–421, 2017.

A. Dahlan Permana, V. M. Nasution, G. Prakarsa, and C. Author, “Design and Development of Fuzzy Logic Application Tsukamoto Method in Predicting the Number of Covid-19 Positive Cases in West Java,†Int. J. Glob. Oper. Res., vol. 1, no. 2, pp. 85–95, 2020, [Online]. Available: http://www.iorajournal.org/index.php/ijgor/index.

A. Ariya Caraka, H. Haryanto, D. Purwanti Kusumaningrum, and S. Astuti, “Logika Fuzzy Menggunakan Metode Tsukamoto Untuk Prediksi Perilaku Konsumen Di Toko Bangunan,†2015.

Z. Shofia Hikmawati and R. Arifudin, “Prediction the Number of Dengue Hemorrhagic Fever Patients Using Fuzzy Tsukamoto Method at Public Health Service of Purbalingga,†Sci. J. Informatics, vol. 4, no. 2, pp. 2407–7658, 2017, [Online]. Available: http://journal.unnes.ac.id/nju/index.php/sji.

V. M. Nasution and G. Prakarsa, “Optimasi Produksi Barang Menggunakan Logika Fuzzy Metode Mamdani,†J. MEDIA Inform. BUDIDARMA, vol. 4, no. 1, p. 129, Jan. 2020, doi: 10.30865/mib.v4i1.1719.

T. Puryanto, J. H. Soedarto, and S. Tembalang Semarang, “Sistem Perencanaan Penambahan Stok Barang menggunakan Metode Fuzzy C-Means dan Fuzzy Tsukamoto (Studi Kasus di Distributor Alfamart Semarang),†2016.

O. : Minarni and F. Aldyanto, “Prediksi Jumlah Produksi Roti Menggunakan Metode Logika Fuzzy (Studi Kasus : Roti Malabar Bakery),†J. TEKNOIF, vol. 4, no. 2, 2016.

Y. Riyadi, H. Wiguna, S. Haryanto, and M. T. Kom, “Sistem Berbasis Aturan Menggunakan Logika Fuzzy Tsukamoto untuk Prediksi Jumlah Produksi Roti pada cv. Gendis bakery.â€

A. Syafii, A. Mursito, A. Muhlisin, A. Widiarto, and A. Saifudin, “Sistem Kendali Pengatur Suhu Ruangan pada Smart Building dengan Aplikasi Telegram menggunakan Fuzzy Logic Control,†vol. 4, no. 3, pp. 138–144, 2021, doi: 10.32493/jtsi.v4i3.8892.

Y. Ferdiansyah and N. Hidayat, “Implementasi Metode Fuzzy - Tsukamoto Untuk Diagnosis Penyakit Pada Kelamin Laki Laki,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 12, pp. 7516–7520, 2018.

M. Irfan, L. P. Ayuningtias, and J. Jumadi, “Analisa Perbandingan Logic Fuzzy Metode Tsukamoto, Sugeno, Dan Mamdani ( Studi Kasus : Prediksi Jumlah Pendaftar Mahasiswa Baru Fakultas Sains Dan Teknologi Uin Sunan Gunung Djati Bandung),†J. Tek. Inform., vol. 10, no. 1, pp. 9–16, 2018, doi: 10.15408/jti.v10i1.6810.

R. N. C. Devi, S. T. Safitri, and F. M. Wibowo, “Penerapan Metode Fuzzy Logic Tsukamoto Dalam Penentu Alat Kontrasepsi,†Pros. SENDI_U 2018, pp. 88–96, 2018.

A. F. Tasidjawa, I. P. Saputro, and T. C. Suwanto, “Penerapan Fuzzy Logic Tsukamoto Untuk Penentuan Suhu Ideal Pada Kandang Ayam Broiler,†J. Ilm. Realt., vol. 14, no. 1, pp. 42–48, 2018, doi: 10.52159/realtech.v14i1.115.

Downloads

Published

2021-10-26