Implementasi Metode Naïve Bayes Dalam Penilaian Kinerja Sales Marketing Pada PT. Pachira Distrinusa

Authors

  • Anis Senika STIKOM CKI, Jakarta
  • Rasiban Rasiban STIKOM CKI, Jakarta
  • Dadang Iskandar STIKOM CKI, Jakarta

DOI:

https://doi.org/10.30865/mib.v6i1.3331

Keywords:

Sales Assessment, Algorithm, Naive Bayes Classifier, Information System, ROC

Abstract

This study aims to build an information system that can support companies in making decisions, especially regarding sales assessment at PT. Pachira Distrinusa. This is motivated by the difficulty of determining whether or not a sales person deserves an efficient value, because the system is not yet computerized and employee data documents are piled up. In this study, the data used are assessment data at PT. Pachira Distrinusa and the method used is the Naïve Bayes Classifier algorithm. And to find out how well the Naïve Bayes Classifier algorithm is used in this study, the RapidMiner calculation is used to perform the test. From the test in RapidMiner, the accuracy value is 91.67% and the ROC value is 0.979, which means that the Naïve Bayes Classifier algorithm is very well used in this study. After testing using RapidMiner software and getting the test results, then it is implemented into a system using PHP and MySQL which is designed to predict sales assessments. The prediction results obtained from the system are in accordance with the calculation results obtained from RapidMiner calculations and manual calculations. Based on the research that has been done that the decision support system built can be applied to PT. Pachira Distrinusa so as to make it easier to determine the feasibility of the sales assessment at PT. Pachira Distrinusa efficiently.

References

A.S, Rosa dan Shalahudin, M. Rekayasa Perangkat Lunak Terstruktur dan Berorientasi Objek. Edisi ke 2. Informatika Bandung, 2014. Bandung.

Achmad Faisal, Kajian Penerapan Algoritma C4.5, Naïve Baye Dan Neural Network Untuk Memenuhi Penilaian Data Karyawan Service Level Agreement Di Bank, Faktor Exacta 10(4): 350-361, 2017 p-ISSN: 1979-276X e- ISSN: 2502-339X

Ahmad Jamaluddin, Sistem Pendukung Keputusan Seleksi Karyawan Pt.Japfa Comfeed Indonesia Tbk Cabang Kediri Menggunkan Metode Naive Bayes Berbasis Web, Simki-Techsain Vol. 02 No. 04 Tahun 2018 ISSN : 2599-3011

Dwi Remawati, Ruvyanto Dwi Nugroho, Paulus Harsadi, Penerapan Decision Support System Menggunakan Algoritma Naive Bayes Pada konsep Human Resource Information System (HRIS) (Studi kasus : Penerusan Kontrak Kerja Karyawan di PT. Bengawan Retail Mandiri Sukoharjo), Jurnal Ilmiah Sinus (JIS) Vol : ISSN (Print) : 1693-1173 , ISSN (Online): 2548-4028

Din Syamsudin,Yosia Chrismas Decky Halundaka, Aryo Nugroho, Prediksi Status Konsumen Produk Celana Menggunakan Naïve Bayes, Vol. 5 No. 3 (2020) 177 – 184, e-ISSN:2541-6448, p-ISSN:2541-3619

Ekka Pujo, Ariesanto Akhmad, Evaluasi Telemarketing Kartu Kredit Bank Menggunakan Algoritma Genetika untuk Seleksi Fitur dan Naive Bayes, Jurnal Manajemen Sistem Informasi Vol.4, No. 3,September 2019

Errissya Rasywir, Yessi Hartiwi, Pareza Alam Jusia, Yovi, Sistem Pelaporan Prediksi Kinerja

Karyawan Dengan Menggunakan Naïve Bayes Berbasis PHP, ISBN: 978-602-52720-2-8

Herry Derajad Wijaya, Saruni Dwiasnati, Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat, Jurnal Informatika, Vol.7 No.1 April 2020, Halaman 1~7 Issn: 2355-6579 | E-Issn: 2528-2247

Karlena Indriani,Qonita Tanjung, Sistem Pendukung Keputusan Kelayakan Kredit Motor Menggunakan Metode NAÃVE BAYES Pada NSC FINANCE Cikampek, Volume 1 Nomor 2, Oktober 2018 e-ISSN : 2621-234X

Downloads

Published

2022-01-25