Implementasi Metode Naïve Bayes Dalam Penilaian Kinerja Sales Marketing Pada PT. Pachira Distrinusa
DOI:
https://doi.org/10.30865/mib.v6i1.3331Keywords:
Sales Assessment, Algorithm, Naive Bayes Classifier, Information System, ROCAbstract
This study aims to build an information system that can support companies in making decisions, especially regarding sales assessment at PT. Pachira Distrinusa. This is motivated by the difficulty of determining whether or not a sales person deserves an efficient value, because the system is not yet computerized and employee data documents are piled up. In this study, the data used are assessment data at PT. Pachira Distrinusa and the method used is the Naïve Bayes Classifier algorithm. And to find out how well the Naïve Bayes Classifier algorithm is used in this study, the RapidMiner calculation is used to perform the test. From the test in RapidMiner, the accuracy value is 91.67% and the ROC value is 0.979, which means that the Naïve Bayes Classifier algorithm is very well used in this study. After testing using RapidMiner software and getting the test results, then it is implemented into a system using PHP and MySQL which is designed to predict sales assessments. The prediction results obtained from the system are in accordance with the calculation results obtained from RapidMiner calculations and manual calculations. Based on the research that has been done that the decision support system built can be applied to PT. Pachira Distrinusa so as to make it easier to determine the feasibility of the sales assessment at PT. Pachira Distrinusa efficiently.References
A.S, Rosa dan Shalahudin, M. Rekayasa Perangkat Lunak Terstruktur dan Berorientasi Objek. Edisi ke 2. Informatika Bandung, 2014. Bandung.
Achmad Faisal, Kajian Penerapan Algoritma C4.5, Naïve Baye Dan Neural Network Untuk Memenuhi Penilaian Data Karyawan Service Level Agreement Di Bank, Faktor Exacta 10(4): 350-361, 2017 p-ISSN: 1979-276X e- ISSN: 2502-339X
Ahmad Jamaluddin, Sistem Pendukung Keputusan Seleksi Karyawan Pt.Japfa Comfeed Indonesia Tbk Cabang Kediri Menggunkan Metode Naive Bayes Berbasis Web, Simki-Techsain Vol. 02 No. 04 Tahun 2018 ISSN : 2599-3011
Dwi Remawati, Ruvyanto Dwi Nugroho, Paulus Harsadi, Penerapan Decision Support System Menggunakan Algoritma Naive Bayes Pada konsep Human Resource Information System (HRIS) (Studi kasus : Penerusan Kontrak Kerja Karyawan di PT. Bengawan Retail Mandiri Sukoharjo), Jurnal Ilmiah Sinus (JIS) Vol : ISSN (Print) : 1693-1173 , ISSN (Online): 2548-4028
Din Syamsudin,Yosia Chrismas Decky Halundaka, Aryo Nugroho, Prediksi Status Konsumen Produk Celana Menggunakan Naïve Bayes, Vol. 5 No. 3 (2020) 177 – 184, e-ISSN:2541-6448, p-ISSN:2541-3619
Ekka Pujo, Ariesanto Akhmad, Evaluasi Telemarketing Kartu Kredit Bank Menggunakan Algoritma Genetika untuk Seleksi Fitur dan Naive Bayes, Jurnal Manajemen Sistem Informasi Vol.4, No. 3,September 2019
Errissya Rasywir, Yessi Hartiwi, Pareza Alam Jusia, Yovi, Sistem Pelaporan Prediksi Kinerja
Karyawan Dengan Menggunakan Naïve Bayes Berbasis PHP, ISBN: 978-602-52720-2-8
Herry Derajad Wijaya, Saruni Dwiasnati, Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat, Jurnal Informatika, Vol.7 No.1 April 2020, Halaman 1~7 Issn: 2355-6579 | E-Issn: 2528-2247
Karlena Indriani,Qonita Tanjung, Sistem Pendukung Keputusan Kelayakan Kredit Motor Menggunakan Metode NAÃVE BAYES Pada NSC FINANCE Cikampek, Volume 1 Nomor 2, Oktober 2018 e-ISSN : 2621-234X
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).