Penerapan Data Mining Dalam Pemilihan Produk Unggulan dengan Metode Algoritma K-Means Dan K-Medoids
DOI:
https://doi.org/10.30865/mib.v6i1.3294Keywords:
K-Means, K-Medoids, Clustering, Algoritm, Data MiningAbstract
As a business company, PT. XYZ Indonesia is committed to always make improvements to all aspects such as, in terms of determining superior products. To be able to do this, it requires a sufficient source of information to be able to analyze what products are superior or in high demand and what products are less desirable. To find out what products enter the superior product cluster, then researchers do product grouping using the clustering method. In the clustering method there are two types of cluster analysis that have interrelated algorithms, namely k-means and k-medoids. The result of research already conducted that from the value of Davies Bouldin to the k-means algorithm is -0.430 and from the value of Davies Bouldin k-medoids is -1,392 which means that the Davies Bouldin value for the k-medoids method has the smallest Davies Bouldin value so the grouping results using the k-means method are more appropriately used on the issue of superior product selection.References
R. D. Ramadhani and D. J. Ak, “Evaluasi K-Means dan K-Medoids pada Dataset Kecil,†Semin. Nas. Inform. dan Apl., no. September, pp. 20–24, 2017, [Online]. Available: file:///C:/Users/User/Downloads/Evaluasi K-Means dan K-Medoids pada Dataset Kecil.pdf.
I. Algoritma and K. D. A. N. K. Dalam, “Implementasi algoritma k-means dan k-medoids dalam pengelompokan nilai ujian nasional tingkat smk,†no. Ciastech, pp. 717–726, 2020.
D. Marlina, N. Lina, A. Fernando, and A. Ramadhan, “Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak,†J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 4, no. 2, p. 64, 2018, doi: 10.24014/coreit.v4i2.4498.
M. Fuady and J. Nugraha, “IMPLEMENTASI METODE K-MEANS DAN K-MEDOIDS UNTUK Jurusan Statistika , FMIPA , Universitas Islam Indonesia Isnafuady1@gmail.com ABSTRAK PENDAHULUAN Inflasi merupakan permasalahan yang selalu dan pasti dialami oleh setiap negara . Disebabkan oleh pengaruh in,†pp. 327–337, 2017.
I. Kamila, U. Khairunnisa, and M. Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,†J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, p. 119, 2019, doi: 10.24014/rmsi.v5i1.7381.
M. H. Herviany, S. P. Delima, T. Nurhidayah, and K. Kasini, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokkan Daerah Rawan Tanah Longsor Pada Provinsi Jawa Barat: Comparison of K-Means and K-Medoids Algorithms for Grouping Landslide Prone Areas in West Java Province,†MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 34–40, 2021.
A. Amalia, D. R., Narasatu, R., Faqih, “Perbandingan Hasil Klasifikasi Rasa Minuman Thai Tea yang Paling Digemari Menggunakan K-means dan K-medoids,†Pros. Semin. Nas. Unimus, vol. 2, pp. 401–407, 2019.
Y. H. Susanti and E. Widodo, “Perbandingan K-Means dan K-Medoids Clustering terhadap Kelayakan Puskesmas di DIY Tahun 2015,†Pros. SI MaNIs (Seminar Nas. Integr. Mat. dan Nilai Islam., vol. 1, no. 1, pp. 116–122, 2017.
Athifaturrofifah, R. Goejantoro, and D. Yuniarti, “Perbandingan Pengelompokan K-Means dan K-Medoids Pada Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Studi Kasus : Data Titik Panas Di Indonesia Pada 28 April 2018),†J. EKSPONENSIAL, vol. 10, no. 2, pp. 143–152, 2019.
W. E. Susanto and D. Riana, “Komparasi Algoritma,†J. Speed, vol. 8, no. 3, pp. 18–27, 2016.
A. H. Neng Sri Lathifah Zulfa, “KAJIAN DATA MINING MENGGUNAKAN ALGORITMA K-MEANS DAN K-MEDOIDS DALAM STRATEGI PROMOSI,†Angew. Chemie Int. Ed. 6(11), 951–952., vol. 2, no. 2, pp. 57–62, 1967.
M. H. Siregar, “Data Mining Klasterisasi Penjualan Alat-Alat Bangunan Menggunakan Metode K-Means (Studi Kasus Di Toko Adi Bangunan),†J. Teknol. Dan Open Source, vol. 1, no. 2, pp. 83–91, 2018, doi: 10.36378/jtos.v1i2.24.
R. R. Putra and C. Wadisman, “Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K Means,†INTECOMS J. Inf. Technol. Comput. Sci., vol. 1, no. 1, pp. 72–77, 2018.
R. Andrean, S. Fendy, and A. Nugroho, “Klasterisasi Pengendalian Persediaan Aki Menggunakan Metode K-Means,†JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 4, no. 1, p. 5, 2019, doi: 10.31328/jointecs.v4i1.998.
R. Muliono and Z. Sembiring, “Data Mining Clustering Menggunakan Algoritma K-Means Untuk Klasterisasi Tingkat Tridarma Pengajaran Dosen,†vol. 4, no. 2, pp. 2502–714, 2019.
S. Kasus and K. Ben, “Proceeding SENDIU 2021 PERBANDINGAN CLUSTERING OPTIMALISASI STOK BARANG MENGGUNAKAN ALGORITMA K – MEANS DAN ALGORTIMA K – MEDOIDS,†pp. 978–979, 2021.
A. U. Fitriyadi and A. Kurniawati, “Analisis Algoritma K-Means dan K-Medoids Untuk Clustering Data Kinerja Karyawan Pada Perusahaan Perumahan Nasional,†vol. 10, no. 1, pp. 157–168, 2021.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).