Klasifikasi Dehidrasi Tubuh Manusia Berdasarkan Citra RGB Pada Warna Urine Menggunakan Metode K-Nearest Neighbor
DOI:
https://doi.org/10.30865/mib.v6i1.3290Keywords:
Dehydration, Urine, RGB, KNN, MatlabAbstract
Dehydration is a condition in the body where the amount of fluid that comes out is more than the amount of fluid that enters so that the body experiences a lack of fluids. The simplest way to find out if you are dehydrated is to check the color and amount of urine. If it is very dark and there is little water, then the body needs a lot of air. If the urine is clear, it means the body is in normal air balance. The level of dehydration between each person is different, so we need a system that can classify the level of dehydration objectively through urine, so that it can facilitate the process of early detection and diagnosis before being enforced. Based on the research that has been done, it is found that the Matrix Laboratory (Matlab) can classify dehydration in the human body, by utilizing urine images through several processes, namely preprocessing, segmentation, feature extraction of Red Green Blue and then the K-Nearest Neighbor method to classify a person's level of dehydration. From 30 urine image training data and 15 urine image test data with 3 classes of urine color levels, namely not dehydrated, mild dehydration and severe dehydration, the results obtained from the accuracy of the dehydration level classification using the K-Nearest Neighbor method of 93.3% obtained from 14 test data with accurate classification, and 1 test data with inaccurate classification.References
D. Wahiddin and J. Indra, “Klasifikasi Kadar Hidrasi Tubuh Berdasarkan Warna Urine dengan Metode Ekstraksi Fitur Citra dan Euclidean Distance,†Techno Xplore J. Ilmu Komput. dan Teknol. Inf., 2020, doi: 10.36805/technoxplore.v5i1.887.
N. Muna, F. L. Afriansyah, and A. B. Suprayogy, “Penerapan Algoritma Random Forest Untuk Identifikasi Dehidrasi Berbasis Citra Urine,†J. Inform. Polinema, vol. 6, no. 3, pp. 49–54, 2019.
D. A. Faldano, D. Wahiddin, C. Zonyfar, and K. A. Baihaqi, “Deteksi Hidrasi Tubuh Menggunakan Sensor Tcs3200,†Conf. Innov. Appl. Sci. Technol. (CIASTECH 2020), no. Ciastech, pp. 675–682, 2020.
B. Priyanto and Supatman, “Klasifikasi citra sampel urine segar ( fresh human urine sample ) menggunakan metode histogram untuk mendeteksi dehidrasi,†J. Sainstech Politek. Indonusa Surakarta, vol. 7, 2020.
C. Paramita, E. Hari Rachmawanto, C. Atika Sari, and D. R. Ignatius Moses Setiadi, “Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor,†J. Inform. J. Pengemb. IT, vol. 4, no. 1, pp. 1–6, 2019, doi: 10.30591/jpit.v4i1.1267.
M. Faruk and N. Nafi’iyah, “Klasifikasi Kanker Kulit Berdasarkan Fitur Tekstur , Fitur Warna Citra Menggunakan SVM dan KNN,†Telematika, vol. 13, no. 2, pp. 100–109, 2020.
F. Y. Manik and K. S. Saragih, “Klasifikasi Belimbing Menggunakan Naïve Bayes Berdasarkan Fitur Warna RGB,†IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 11, no. 1, p. 99, 2017, doi: 10.22146/ijccs.17838.
A. N. Hermana, A. Zulkarnain, and Y. A. Riadi, “Implementasi Pengolahan Model Identifikasi Warna,†MIND J., vol. 3, no. 1, 2018, doi: https://doi.org/10.26760/mindjournal.
A. Dwianggreni and Kusuma, “Penilaian Status Hidrasi,†Hydration Assess. JIKSH, vol. 11, no. 1, pp. 13–17, 2020, doi: 10.35816/jiskh.v10i2.196.
F. D. Febriani, Y. A. Sari, and R. C. Wihandika, “Klasifikasi Citra Kue Tradisional Indonesia Berdasarkan Ekstraksi Fitur Warna RGB Color Moment Menggunakan K-Nearest Neighbor,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 10, pp. 10199–10206, 2019.
P. N. Andono, T.Sutojo, and Muljono, Pengolahan Citra. yogyakarta, 2017.
A. Sindar and R. M. Sinaga, “IMPLEMENTASI TEKNIK THRESHODING PADA SEGMENTASI CITRA DIGITAL,†vol. 1, no. 2, pp. 48–51, 2017.
B. D. Raharja and P. Harsadi, “Implementasi Kompresi Citra Digital Dengan Mengatur Kualitas Citra Digital,†J. Ilm. SINUS, vol. 16, no. 2, pp. 71–77, 2018, doi: 10.30646/sinus.v16i2.363.
R. Dani, A. Sugiharto, and G. A. Winara, “Aplikasi Pengolahan Citra Dalam Pengenalan Pola Huruf Ngalagena Menggunakan MATLAB,†Konf. Nas. Sist. Inform., pp. 772–777, 2015.
D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,†Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, 2020, doi: 10.33096/ijodas.v1i2.13.
L. Indriyani, W. Susanto, and D. Riana, “TEKNIK PENGOLAHAN CITRA MENGGUNAKAN APLIKASI MATLAB PADA PENGUKURAN DIAMETER BUAH JERUK KEPROK,†IJCIT (Indonesian J. Comput. Inf. Technol., vol. 2, no. 1, pp. 46–52, 2017.
F. G. Febrinanto, C. Dewi, and A. T. Wiratno, “Implementasi Algoritme K-Means Sebagai Metode Segmentasi Citra Dalam Identifikasi Penyakit Daun Jeruk,†J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 11, pp. 5375–5383, 2018.
Yulia Fitri, Delovita Ginting, Shabri Putra Wirman, Neneng Fitrya, Sri Fitria Retnawaty, and Noni Febriani, “Pelatihan Penggunaan Aplikasi Gui Matlab Untuk Materi Dinamika Gerak,†J. Pengabdi. UntukMu NegeRI, vol. 4, no. 2, pp. 206–210, 2020, doi: 10.37859/jpumri.v4i2.2116.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).