Pengenalan Wajah dengan Menggunakan Metode Local Binary Patterns Histograms (LBPH)
DOI:
https://doi.org/10.30865/mib.v5i4.3171Keywords:
Facial Features, LBPH, LBP, HOG, Face RecognitionAbstract
Rapid technological developments in the world have had a major impact on various fields, i.e. administration and data collection. One of the data collection systems that is often used is attendance. The attendance system initially only used an attendance sheet that was filled out manually, but there were shortcomings i.e. the possibility of forging signatures during attendance. Therefore, other methods are needed to overcome these problems. In this study, we propose to use facial features for attendance. The data used are 750 facial images consisting of 5 people with each person having 150 facial images with various expressions. The data is divided into two, namely 500 images as training data and 250 images as test data. The next stage is to find a facial features, we propose to use the Local Binary Patterns Histograms (LBPH) method. LBPH is a combination of the Local Binary Patterns (LBP) method with Histograms of Oriented Gradients (HOG). After that, we perform face recognition based on the features that have been obtained. Based on the research results obtained an accuracy rate of 86%
References
R. Kosasih, “Penggunaan Metode Linear Discriminant Analysis Untuk Pengenalan Wajah Dengan Membandingkan Banyaknya Data Latih,†J. Ilm. Teknol. dan Rekayasa, vol. 26, no. 1, pp. 25–34, 2021.
L. Wang and A. A. Siddique, “Facial recognition system using LBPH face recognizer for anti-theft and surveillance application based on drone technology,†Meas. Control, vol. 53, no. 7, pp. 1070–1077, 2020, doi: 10.1177/0020294020932344.
R. Kosasih, “Pengenalan Wajah Menggunakan PCA dengan Memperhatikan Jumlah Data Latih dan Vektor Eigen,†J. Inform. Univ. Pamulang, vol. 6, no. 1, pp. 1–6, 2021.
I. N. T. A. Putra and A. Harjoko, “Pengenalan Wajah Berbasis Mobile Menggunakan Fisherface dan Distance Classifier,†JST (Jurnal Sains dan Teknol., vol. 7, no. 1, pp. 135–145, 2018, doi: 10.23887/jst-undiksha.v7i1.13267.
A. P. Singh, S. S. Manvi, P. Nimbal, and G. K. Shyam, “Face Recognition System Based on LBPH Algorithm,†Int. J. Eng. Adv. Technol., vol. 8, no. 5, pp. 26–30, 2019.
R. Kosasih and A. Fahrurozi, “Clustering of Face Images by Using Isomap method,†in Proceeding on International Workshop on Academic Collaboration 2017, 2017, no. May, pp. 52–56.
R. Kosasih, “Kombinasi Metode Isomap dan KNN Pada Image Processing Untuk Pengenalan Wajah,†CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, pp. 166–170, 2020.
Salamun and F. Wazir, “Rancang Bangun Sistem Pengenalan Wajah Dengan Metode Principal Component Analysis,†J. Teknol. dan Sist. Inf. UNIVRAB, vol. 1, no. 2, pp. 59–75, 2016, doi: 10.36341/rabit.v1i2.25.
P. Rosyani, “Pengenalan Wajah Menggunakan Metode Principal Component Analysis (PCA) dan Canberra Distance,†J. Inform. Univ. Pamulang, vol. 2, no. 2, p. 118, 2017, doi: 10.32493/informatika.v2i2.1515.
A. Fahrurozi and R. Kosasih, “Face Recognition Using Local Binary Pattern Combined With PCA For Images Under Various Expression and Illumination,†in Proceeding on International Workshop on Academic Collaboration 2017, 2017, no. May, pp. 1–7.
M. H. Sigari, N. Mozayani, and H. R. Pourreza, “Fuzzy Running Average and Fuzzy Background Subtraction: Concepts and Application,†IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 8, no. 2, pp. 138–143, 2008.
R. Kosasih and M. Arfiansyah, “Pendeteksian Kendaraan dengan Menggunakan Metode Running Average Background Substraction dan Morfologi Citra,†J. Media Inform. Budidarma, vol. 4, no. 4, pp. 979–985, 2020.
M. Ahsan, Y. Li, J. Zhang, and T. Ahad, “Face Recognition in an Unconstrained and Real-Time Environment Using Novel BMC-LBPH Methods Incorporates with DJI Vision Sensor,†J. Sens. Actuator Networks, vol. 9, no. 54, pp. 1–12, 2020, doi: 10.3390/jsan9040054.
M. S. Sruthi, S. Sarath, R. Sathish, and S. Shanthosh, “A Fast and Accurate Face Recognition Security System,†in Journal of Physics: Conference Series, 2021, pp. 1–7, doi: 10.1088/1742-6596/1916/1/012185.
A. Gunadarma and K. R. R. Wardani, “Penerapan Histogram of Oriented Gradients , Principal Component Analysis , dan AdaBoost untuk Sistem Pengenalan Wajah,†J. Telemat., vol. 13, no. 2, pp. 93–98, 2018.
S. Bhagekar, S. Jamdhade, A. Gutti, R. Kamble, and P. A. Vidwat, “Face Recognition Using Local Binary Pattern Histogram ( LBPH ) Technique,†Int. J. Adv. Comput. Electron. Technol., vol. 5, no. 1, pp. 3–6, 2018.
F. Setiawan and D. A. Rahayu, “Sistem Pengenalan Wajah Dengan Metode Local Binary Pattern Histogram Pada Firebase Berbasis Opencv,†in Seminar Nasional Teknologi Informasi dan Komunikasi STI&K, 2020, vol. 4, no. 1, pp. 19–25.
F. Deeba, H. Memon, F. A. Dharezo, A. Ahmed, and A. Ghaffar, “LBPH-based Enhanced Real-Time Face Recognition,†Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp. 274–280, 2019.
S. J. Shri, S. Jothilakshmi, and G. Jawaherlalnehru, “Real Time Face Recognition in Group Images using LBPH,†Int. J. Recent Technol. Eng., vol. 8, no. 2, pp. 1362–1367, 2019, doi: 10.35940/ijrte.B2015.078219.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).