Tourist Places Recommender System Using Cosine Similarity and Singular Value Decomposition Methods

Authors

DOI:

https://doi.org/10.30865/mib.v5i4.3151

Keywords:

Tourism, Recommendation, Cosine Similarity, Singular Value Decomposition, Rating, Review

Abstract

Tourism in the city of Bandung has various potentials in the field of culture, regional specialties, buildings, and other tourist attractions. On the Tripadvisor page there are many reviews from users who have visited tourist attractions in the city of Bandung. In this case, user reviews are an important element for analysis. The analysis process is carried out using rule-based sentiment analysis. In conducting the review analysis, we use vaderSentiment to weight the positive and negative values. Positive values are subtracted from negative values to get a compound value and converted to a rating value. The rating value obtained is then processed using the Cosine Similarity and Singular Value Decomposition methods to obtain recommendations for tourist attractions in the city of Bandung. For this method, we use the Root Mean Square Error method as a measure of the level of accuracy between the predicted values. The results of the measurement of the level of accuracy produce a value of 3,489 in the Cosine Similarity method, while the Singular Value Decomposition method gets a value of 1,231. The value in the Singular Value Decomposition method is smaller than the Cosine Similarity method with a difference of 2,258 values

Author Biography

Z K Abdurahman Baizal, Telkom University, Bandung

School of Computing

References

BPS-Statistics Indonesia, "Domestic Tourism Statistics 2019", BPS RI / BPS-Statistics Indonesia, 2019.

Utami, D. D., Sinaga, E. K., Desiria, M. K., Febriani, N., Prayitno, R. A., Department, T., Tinggi, S., & Bandung, P. (2020). Potential of Smart Tourism Destination in Bandung City. TEST Engineering and Management.

Fajri, K., & Riyanto E.S, N. (2016). STRATEGI PENGEMBANGAN DESTINASI PARIWISATA KOTA BANDUNG DALAM MENINGKATKAN TINGKAT KUNJUNGAN WISATAWAN ASAL MALAYSIA. Tourism Scientific Journal. https://doi.org/10.32659/tsj.v1i2.9

Xie, K. L., Chen, C., & Wu, S. (2016). Online Consumer Review Factors Affecting Offline Hotel Popularity: Evidence from Tripadvisor. Journal of Travel and Tourism Marketing. https://doi.org/10.1080/10548408.2015.1050538

Vagliano, I., Monti, D., & Morisio, M. (2017). SemRevRec: A recommender system based on user reviews and linked data. CEUR Workshop Proceedings.

Al-Ghuribi, S. M., & Mohd Noah, S. A. (2019). Multi-Criteria Review-Based Recommender System-The State of the Art. In IEEE Access. https://doi.org/10.1109/ACCESS.2019.2954861

Zhao, Q., Zhang, Y., Ma, J., & Duan, Q. (2019). Factored Item Similarity and Bayesian Personalized Ranking for Recommendation with Implicit Feedback. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-018-3358-0

Ardimansyah, M. I., Huda, A. F., & Baizal, Z. K. A. (2017). Preprocessing matrix factorization for solving data sparsity on memory-based collaborative filtering. Proceeding - 2017 3rd International Conference on Science in Information Technology: Theory and Application of IT for Education, Industry and Society in Big Data Era, ICSITech 2017. https://doi.org/10.1109/ICSITech.2017.8257168

Hug, N. (2020). Surprise: A Python library for recommender systems. Journal of Open Source Software. https://doi.org/10.21105/joss.02174

Gutflaish, E., Kontorovich, A., Sabato, S., Biller, O., & Sofer, O. (2019). Temporal anomaly detection: Calibrating the surprise. 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019. https://doi.org/10.1609/aaai.v33i01.33013755

Sageri Fikri Ramadhan, ZK Abdurahman Baizal and Rita Rismala.(2020). Lodging Recommendations Using the SparkML Engine ALS and Surprise SVD. Jurnal Media Informatika Budidarma. https://doi.org/10.30865/mib.v%25vi%25i.2257.

Kumar, A., Seth, S., Gupta, S., & Shubham. (2020). Sentiment-enhanced content-based system for online recommendations and rating prediction. International Journal of Gaming and Computer-Mediated Simulations. https://doi.org/10.4018/IJGCMS.2020040101

Joy, J., & Renumol, V. G. (2020). Comparison of generic similarity measures in E-learning content recommender system in cold-start condition. 2020 IEEE Bombay Section Signature Conference, IBSSC 2020. https://doi.org/10.1109/IBSSC51096.2020.9332162

Protasiewicz, J., Pedrycz, W., Kozłowski, M., Dadas, S., Stanisławek, T., Kopacz, A., & Gałȩzewska, M. (2016). A recommender system of reviewers and experts in reviewing problems. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2016.05.041

Rodpysh, K. V., Mirabedini, S. J., & Banirostam, T. (2021). Employing singular value decomposition and similarity criteria for alleviating cold start and sparse data in context-aware recommender systems. Electronic Commerce Research. https://doi.org/10.1007/s10660-021-09488-7

Rahmawati, S., Nurjanah, D., & Rismala, R. (2018). Analisis dan Implementasi pendekatan Hybrid untuk Sistem Rekomendasi Pekerjaan dengan Metode Knowledge Based dan Collaborative Filtering. Indonesian Journal on Computing (Indo-JC). https://doi.org/10.21108/indojc.2018.3.2.210

Ćalasan, M., Abdel Aleem, S. H. E., & Zobaa, A. F. (2020). On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2020.112716

Wang, X., Zhang, F., Kung, H. te, Johnson, V. C., & Latif, A. (2020). Extracting soil salinization information with a fractional-order filtering algorithm and grid-search support vector machine (GS-SVM) model. International Journal of Remote Sensing. https://doi.org/10.1080/01431161.2019.1654142

Downloads

Published

2021-10-26