Analisis Sentimen E-Wallet di Twitter Menggunakan Support Vector Machine dan Recursive Feature Elimination

Authors

  • Elza Fitriana Saraswita Sriwijaya University, Palembang
  • Dian Palupi Rini Sriwijaya University, Palembang
  • Abdiansah Abdiansah Sriwijaya University, Palembang

DOI:

https://doi.org/10.30865/mib.v5i4.3118

Keywords:

Supports Vector Machine, Sentiment Analysis, Machine Learning, Twitter, Classification

Abstract

Grouping of positive or negative sentiments in text reviews is increasingly being done automatically for identification. The selection of features in the classification is a problem that is often not solved. Most of the feature selection related to sentiment classification techniques is insurmountable in terms of evaluating significant features that reduce classification performance. Good feature selection technique can improve sentiment classification performance in machine learning approach. First, two sets of customer review data are labeled with sentiment and then retrieved, processed for evaluation. Next, the supports vector machine (svm-rfe) method is created and tested on the dataset. Svm-rfe will be run to measure the importance of the feature by rating the feature iteratively. For sentiment classification, only the top features of the ranking feature sequence will be used. Finally, performance is measured using accuracy, precision, recall, and f1-score. The experimental results show promising performance with an accuracy rate of 81%. This level of reduction is significant in making optimal use of computing resources while maintaining the efficiency of classification performance

Author Biography

Elza Fitriana Saraswita, Sriwijaya University, Palembang

Magister informmatics student, computer science , sriwijaya university

References

E. Susilawati, “Public Services Satisfaction Based on Sentiment Analysis.,†2016 Int. Conf. Inf. Technol. Syst. Innov., no. ISBN : 978-1-5090-2449-0., 2016.

N. D. Putranti and E. Winarko, “Analisis Sentimen Twitter untuk Teks Berbahasa Indonesia dengan Maximum Entropy dan Support Vector Machine,†IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 8, no. 1, p. 91, 2014, doi: 10.22146/ijccs.3499.

I. P. Windasari and D. Eridani, “Sentiment analysis on travel destination in Indonesia,†Proc. - 2017 4th Int. Conf. Inf. Technol. Comput. Electr. Eng. ICITACEE 2017, vol. 2018-Janua, pp. 276–279, 2017, doi: 10.1109/ICITACEE.2017.8257717.

R. Ferdiana, F. Jatmiko, D. D. Purwanti, A. S. T. Ayu, and W. F. Dicka, “Dataset Indonesia untuk Analisis Sentimen,†J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 4, p. 334, 2019, doi: 10.22146/jnteti.v8i4.533.

D. C. Wintaka, M. A. Bijaksana, and I. Asror, “Named-entity recognition on Indonesian tweets using bidirectional LSTM-CRF,†Procedia Comput. Sci., vol. 157, pp. 221–228, 2019, doi: 10.1016/j.procs.2019.08.161.

A. R. T. Lestari, R. S. Perdana, and M. A. Fauzi, “Analisis Sentimen Tentang Opini Pilkada DKI 2017 Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Näive Bayes dan Pembobotan Emoji,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 12, pp. 1718–1724, 2017, [Online]. Available: http://j-ptiik.ub.ac.id.

A. Alamsyah and F. Saviera, “A Comparison of Indonesia’s E-Commerce Sentiment Analysis for Marketing Intelligence Effort (case study of Bukalapak, Tokopedia and Elevenia),†8 th Int. Conf. Sustain. Collab. Bus. , Technol. Inf. Innov., 2017, [Online]. Available: http://scbtii.telkomuniversity.ac.id/.

M. CINDO, D. P. Rini, and E. Ermatita, “ANALISIS SENTIMEN PADA TWITTER MENGGUNAKAN METODE MAXIMUM ENTROPY DAN SUPPORT VECTOR MACHINE.†Sriwijaya University, 2019.

D. F. Budiono, A. S. Nugroho, and A. Doewes, “Twitter sentiment analysis of DKI Jakarta’s gubernatorial election 2017 with predictive and descriptive approaches,†Proc. - 2017 Int. Conf. Comput. Control. Informatics its Appl. Emerg. Trends Comput. Sci. Eng. IC3INA 2017, vol. 2018-Janua, pp. 89–94, 2017, doi: 10.1109/IC3INA.2017.8251746.

N. S. Mohd Nafis and S. Awang, “An Enhanced Hybrid Feature Selection Technique Using Term Frequency-Inverse Document Frequency and Support Vector Machine-Recursive Feature Elimination for Sentiment Classification,†IEEE Access, vol. 9, no. Ml, pp. 52177–52192, 2021, doi: 10.1109/ACCESS.2021.3069001.

F. Nurhuda, S. Widya Sihwi, and A. Doewes, “Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier,†J. Teknol. Inf. ITSmart, vol. 2, no. 2, p. 35, 2016, doi: 10.20961/its.v2i2.630.

R. R. Pullanagari, G. Kereszturi, and I. Yule, “Integrating airborne hyperspectral, topographic, and soil data for estimating pasture quality using recursive feature elimination with random forest regression,†Remote Sens., vol. 10, no. 7, 2018, doi: 10.3390/rs10071117.

G. Shalunts, G. Backfried, and H. S. Alam, “Sentiment analysis in Indonesian and French by SentiSAIL,†Proc. - 9th Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. APSIPA ASC 2017, vol. 2018-Febru, no. December, pp. 69–75, 2018, doi: 10.1109/APSIPA.2017.8282004.

D. T. Alamanda, A. Ramdhani, I. Kania, W. Susilawati, and E. S. Hadi, “Sentiment Analysis Using Text Mining of Indonesia Tourism Reviews via Social Media,†Int. J. Humanit. Arts Soc. Sci., vol. 5, no. 2, pp. 72–82, 2019, doi: 10.20469/ijhss.5.10004-2.

M. W. A. Putra, Susanti, Erlin, and Herwin, “Analisis Sentimen Dompet Elektronik Pada Twitter Menggunakan Metode Naïve Bayes Classifier,†IT J. Res. Dev., vol. 5, no. 1, pp. 72–86, 2020, doi: 10.25299/itjrd.2020.vol5(1).5159.

M. A. Fauzi, “JOURNAL OF SOUTHWEST JIAOTONG,†pp. 1–7, 2018.

F. Romadoni, Y. Umaidah, and B. N. Sari, “Text Mining Untuk Analisis Sentimen Pelanggan Terhadap Layanan Uang Elektronik Menggunakan Algoritma Support Vector Machine,†J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 2, p. 247, 2020, doi: 10.32736/sisfokom.v9i2.903.

A. F. Zulfikar, D. Supriyadi, Y. Heryadi, and Lukas, “Comparison performance of decision tree classification model for spam filtering with or without the recursive feature elimination (RFE) approach,†2019 4th Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2019, vol. 6, pp. 311–316, 2019, doi: 10.1109/ICITISEE48480.2019.9004001.

S. S. Salim and J. Mayary, “Analisis Sentimen Pengguna Twitter Terhadap Dompet Elektronik Dengan Metode Lexicon Based Dan K – Nearest Neighbor,†J. Ilm. Inform. Komput., vol. 25, no. 1, pp. 1–17, 2020, doi: 10.35760/ik.2020.v25i1.2411.

M. A. Fauzi, “Word2Vec model for sentiment analysis of product reviews in Indonesian language,†Int. J. Electr. Comput. Eng., vol. 9, no. 1, p. 525, 2019, doi: 10.11591/ijece.v9i1.pp525-530.

Y. T. Arifin, “KOMPARASI FITUR SELEKSI PADA ALGORITMA SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN REVIEW,†vol. 3, no. September, pp. 191–199, 2016.

B. H. Iswanto and V. Poerwoto, “Sentiment analysis on Bahasa Indonesia tweets using Unibigram models and machine learning techniques,†IOP Conf. Ser. Mater. Sci. Eng., vol. 434, no. 1, 2018, doi: 10.1088/1757-899X/434/1/012255.

A. F. Hidayatullah, C. I. Ratnasari, and S. Wisnugroho, “Analysis of Stemming Influence on Indonesian Tweet Classification,†Telkomnika (Telecommunication Comput. Electron. Control., vol. 14, no. 2, pp. 665–673, 2016, doi: 10.12928/telkomnika.v14i2.3113.

M. Shieh and C. Yang, “Multiclass SVM-RFE for product form feature selection,†vol. 35, pp. 531–541, 2008, doi: 10.1016/j.eswa.2007.07.043.

Downloads

Published

2021-10-26