Penerapan Metode K-Means Untuk Menganalisis Minat Nasabah
DOI:
https://doi.org/10.30865/mib.v5i3.3113Keywords:
Insurance, Cluster, Datamining, K-Means, PremiAbstract
Insurance is a mechanism of protection or protection from the risk of loss by transferring the risk to another party. Sometimes a product that has just emerged becomes a product that is superior in terms of sales, so that interest in a product is not absolutely measured from the year the product was released. The constraint factors include the marketing of the product when it was launched. Offering products with low premiums along with the benefits that customers want. However, insurance companies still have difficulty in classifying superior products that are in great demand by prospective customers. For this reason, a technique for grouping insurance products is needed to make it easier for companies to see superior products and choose products that suit the needs of their customers. Analyzing and processing data using the K-Means method in the clustering of insurance products is the aim of this study. The application of the K-Means algorithm is to help calculate the purity value from the results of the clustering carried out so that the clustering of insurance products is in accordance with the needs of its customers. The application of the K-Means method with clustering techniques for data mining produces information on insurance products that are more attractive to potential customers. This is very appropriate in grouping data types because it is easier to implement and its application can filter quickly and precisely. Calculations using the K-Means method with a data sample of 55 customers obtained 3 clusters, namely cluster 1 for fire insurance which has 30 customers, cluster 2 for accident insurance 24 people and cluster 3 for health insurance 1 person.
References
A. Khairani and I. Irwansyah, “Pemanfaatan Big Data Untuk Percepatan Proses Underwriting Sebagai Strategi Komunikasi Marketing Terpadu Perusahaan Asuransi Jiwa,†J. Nomosleca, vol. 4, no. 2, 2018, doi: 10.26905/nomosleca.v4i2.2546.
A. Apriliani Akhadun and A. Hidayat, “Sistem Pendukung Keputusan Pemilihan Produk Asuransi Berbasis Web menggunakan Metode AHP (Analytic Hierarchy Process ) Studi Kasus BRI Life Semarang,†J. Inform. dan Rekayasa Perangkat Lunak, vol. 2, no. 1, p. 49, 2020, doi: 10.36499/jinrpl.v2i1.3210.
B. Sinaga, Sulindawaty, and I. Siagian, “Sistem Pendukung Keputusan Pemilihan Asuransi Dengan Metode Weighted Product Dan Weighted Sum Model Pada PT. Prudential,†J. Mantik Penusa, vol. 1, no. 2, pp. 59–64, 2017, [Online]. Available: http://e-jurnal.pelitanusantara.ac.id/index.php/mantik/article/view/267/166.
L. M. Pratiwi, Diana, and E. P. Agustin, “Penerapan K-Means Clustering Untuk Memprediksi Minat Nasabah Pada Pt . Asuransi Jiwa Bersama 1912 Bumiputera Prabumulih,†Univ. Bina Darma, pp. 1–16, 2016.
S. N. Gama, I. Cholissodin, and M. T. Furqon, “Clustering Portal Jurnal International untuk Rekomensari Publikasi Berdasarkan Kualitas Cluster Menggunakan Kernel K-Means,†Progr. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 5, no. 1, 2015.
S. S. Nagari and L. Inayati, “Implementation of Clustering Using K-Means Method To Determine Nutritional Status,†J. Biometrika dan Kependud., vol. 9, no. 1, p. 62, 2020, doi: 10.20473/jbk.v9i1.2020.62-68.
R. NOVIANTO, “Penerapan Data Mining menggunakan Algoritma K-Means Clustering untuk Menganalisa Bisnis Perusahaan Asuransi,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 6, no. 1, pp. 85–95, 2019, doi: 10.35957/jatisi.v6i1.150.
W. S. Prasetya, “Sistem Pendukung Keputusan Pemilihan Produk Asuransi,†vol. 8, no. 1, pp. 105–116, 2018.
Y. Irawan, “Penerapan data mining untuk evaluasi data penjualan menggunakan metode clustering dan algoritma hirarki divisive,†Jtiulm, vol. 3, no. 1, pp. 13–20, 2019.
A. H. Nasyuha et al., “Frequent pattern growth algorithm for maximizing display items,†Telkomnika (Telecommunication Comput. Electron. Control., vol. 19, no. 2, pp. 390–396, 2021, doi: 10.12928/TELKOMNIKA.v19i2.16192.
S. Suliman, “Implementasi Data Mining Terhadap Prestasi Belajar Mahasiswa Berdasarkan Pergaulan dan Sosial Ekonomi Dengan Algoritma K-Means Clustering,†Simkom, vol. 6, no. 1, pp. 1–11, 2021, doi: 10.51717/simkom.v6i1.48.
Yuda Irawan, “Implementation Of Data Mining For Determining Majors Using K-Means Algorithm In Students Of SMA Negeri 1 Pangkalan Kerinci,†J. Appl. Eng. Technol. Sci., vol. 1, no. 1, pp. 17–29, 2019, doi: 10.37385/jaets.v1i1.18.
M. W. Talakua, Z. A. Leleury, and A. W. Talluta, “Acluster Analysis By Using K-Means Method for Grouping of District/City in Maluku Province Industrial Based on Indicators of Maluku Development Index in 2014,†Barekeng J. Ilmu Mat. dan Terap., vol. 11, no. 2, pp. 119–128, 2017.
R. R. Putra and C. Wadisman, “Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K Means,†INTECOMS J. Inf. Technol. Comput. Sci., vol. 1, no. 1, pp. 72–77, 2018, doi: 10.31539/intecoms.v1i1.141.
Y. Lase and E. Panggabean, “Implementasi Metode K-Means Clustering Dalam Sistem Pemilihan Jurusan Di SMK Swasta Harapan Baru,†J. Teknol. dan Ilmu Komput. Prima, vol. 2, no. 2, p. 43, 2019, doi: 10.34012/jutikomp.v2i2.723.
L. Maulida, “Penerapan Datamining Dalam Mengelompokkan Kunjungan Wisatawan Ke Objek Wisata Unggulan Di Prov. Dki Jakarta Dengan K-Means,†JISKA (Jurnal Inform. Sunan Kalijaga), vol. 2, no. 3, p. 167, 2018, doi: 10.14421/jiska.2018.23-06.
A. V. D. Sano and H. Nindito, “Application of K-Means Algorithm for Cluster Analysis on Poverty of Provinces in Indonesia,†ComTech Comput. Math. Eng. Appl., vol. 7, no. 2, p. 141, 2016, doi: 10.21512/comtech.v7i2.2254.
A. Bastian, H. Sujadi, and G. Febrianto, “Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka),†no. 1, pp. 26–32.
A. Mahmudan, “Clustering of District or City in Central Java Based COVID-19 Case Using K-Means Clustering,†J. Mat. Stat. dan Komputasi, vol. 17, no. 1, pp. 1–13, 2020, doi: 10.20956/jmsk.v17i1.10727.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).