Optimasi Hyperparameter TensorFlow dengan Menggunakan Optuna di Python: Study Kasus Klasifikasi Dokumen Abstrak Skripsi

Authors

  • Siti Mujilahwati Universitas Islam Lamongan, Jawa Timur
  • Miftahus Sholihin Universitas Islam Lamongan, Jawa Timur
  • Retno Wardhani Universitas Islam Lamongan, Jawa Timur

DOI:

https://doi.org/10.30865/mib.v5i3.3090

Keywords:

Optimization, TensorFlow, Optuna, Python, Thesis

Abstract

In today's rapidly growing digital era, the role of computing in artificial intelligence is needed to be able to help business people. Both in the fields of economy, health, and education. The use of machine learning will help related parties in viewing, analyzing, and making decisions. With machine learning, all problems related to data can be solved quickly and precisely. The problem is that the thesis document will increase every year, it will become a useless document if the data processing is not carried out. Past thesis data can be used for analysis and decision-making in the next thesis era. Python is one of the most popular programming languages used for machine learning. One reason is that there are many python-based libraries. Keras is a python-based machine learning library. TensorFlow can be used when dealing with large amounts of data processing, including thesis abstract data. Thus, this study classified 140 thesis abstract documents using hard-TensorFlow with the aim that based on the abstract content it would be classified into 6 classes, namely Android Applications, Data Mining, RPL, SPK, Digital Image Processing, and Expert Systems. The results of the classification with training data as many as 82 documents with model setting batch size = 12 and epoch = 2 with an Accuracy value of 89.04%. While the test loss test data has a higher value than the Accuracy value obtained by 66.66%. By utilizing maximizing TensorFlow performance by adding a parameter that Scikit Learn has, namely Optuna. The test data was optimized with a trial value of 500, the Accuracy increased to 76.19%

References

A. D. Wattimena, “Analisis Sentimen Teks Bahasa Indonesia Pada Media Sosial Menggunakan Algoritma Convolutional Neural Network (Studi Kasus : E-Commerce),†p. 248, 2018.

D. Yuliana and C. Supriyanto, “Klasifikasi Teks Pengaduan Masyarakat Dengan Menggunakan Algoritma Neural Network,†p. 27, 2019.

A. Peryanto, A. Yudhana, and R. Umar, “Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep learning Berbasis Metode Convolutional Neural Network,†Format J. Ilm. Tek. Inform., vol. 8, no. 2, p. 138, Feb. 2020, doi: 10.22441/format.2019.v8.i2.007.

Slamet Fifin Alamsyah, “Implementasi Deep Learning Untuk Klasifikasi Tanaman Toga Berdasarkan Ciri Daun Berbasis Android,†Ubiquitous Comput. Its Appl. J., pp. 113–122, Dec. 2019, doi: 10.51804/ucaiaj.v2i2.113-122.

P. Cen, K. Zhang, and D. Zheng, “Sentiment Analysis Using Deep learning Approach,†J. Artif. Intell., vol. 2, no. 1, pp. 17–27, 2020, doi: 10.32604/jai.2020.010132.

K. Devipriya, D. Prabha, V. Pirya, and S. Sudhakar, “Deep learning Sentiment Analysis For Recommendations In Social Applications,†vol. 9, no. 01, p. 4, 2020.

O. Habimana, Y. Li, R. Li, X. Gu, and G. Yu, “Sentiment analysis using Deep learning approaches: an overview,†Sci. China Inf. Sci., vol. 63, no. 1, p. 111102, Jan. 2020, doi: 10.1007/s11432-018-9941-6.

A. Hassan and A. Mahmood, “Deep learning approach for sentiment analysis of short texts,†in 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, Apr. 2017, pp. 705–710. doi: 10.1109/ICCAR.2017.7942788.

M. Heikal, M. Torki, and N. El-Makky, “Sentiment Analysis of Arabic Tweets using Deep Learning,†Procedia Comput. Sci., vol. 142, pp. 114–122, 2018, doi: 10.1016/j.procs.2018.10.466.

R. R. Santoso, R. Megasari, and Y. A. Hambali, “Implementasi Metode Machine Learning Menggunakan Algoritma Evolving Artificial Neural Network Pada Kasus Prediksi Diagnosis Diabetes,†p. 13.

H. Juwiantho, E. I. Setiawan, J. Santoso, and M. H. Purnomo, “Sentiment Analysis Twitter Bahasa Indonesia Berbasis Word2vec Menggunakan Deep Convolutional Neural Network,†p. 8.

B. P. Putra, B. Irawan, and S. Si, “Deteksi Ujaran Kebencian Dengan Menggunakan Algoritma Convolutional Neural Network Pada Gambar,†p. 8.

A. M. Zamani and J. A. R. Hakim, “Implementasi Algoritma Genetika pada Struktur Backpropagation Neural Network untuk Klasifikasi Kanker Payudara,†vol. 1, no. 1, p. 6, 2012.

I. Ali and L. Sularto, “Optimasi Parameter Artificial Neural Network Menggunakan Algoritma Genetika Untuk Prediksi Kelulusan Mahasiswa,†J. ICT Inf. Commun. Technol., vol. 18, no. 1, pp. 54–59, Aug. 2019, doi: 10.36054/jict-ikmi.v18i1.52.

M. Badrul, “Optimasi Neural Network Dengan Algoritma Genetika Untuk Prediksi Hasil Pemilukada,†. P, p. 14.

R. Dina, “Optimasi Backpropagation Neural Network Menggunakan Metode Algoritma Genetika Dalam Memprediksi Jumlah Pengangguran,†p. 149.

Electrical Engineering Universitas Udayana, N. Widiangga Gautama, A. Dharma, and M. Sudarma, “Analisis Metode Rbf-Nn Dengan Optimasi Algoritma Genetika Pada Peramalan Mata Uang Eur/Usd,†Maj. Ilm. Teknol. Elektro, vol. 15, no. 2, pp. 107–114, Dec. 2016, doi: 10.24843/MITE.1502.16.

A. Kusnadi and J. Pratama, “Implementasi Algoritma Genetika dan Neural Network Pada Aplikasi Peramalan Produksi Mie (Studi Kasus : Omega Mie Jaya),†p. 5.

K. Willems, “Jupyter Notebook Tutorial: The Definitive Guide.†https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook

Downloads

Published

2021-07-31

Issue

Section

Articles