Perbandingan Metode Klasifikasi Data Mining Untuk Rekomendasi Tanaman Pangan
DOI:
https://doi.org/10.30865/mib.v5i3.3086Keywords:
Naïve Bayes, Decision Tree, Support Vector Machine, Neural Network, Random Tree, Random Forest, K Nearest Neighbor, Classification, Comparison, Recommendation, Food CropsAbstract
Determination of the right food crops needs to be done to improve the community's economy in the agricultural sector. The use of traditional cropping patterns needs to be changed by utilizing information technology. The utilization of data from local governments can be used to assist in providing recommendations for types of food crops by processing them with several data mining methods. This method can extract information to find patterns and knowledge from the data. The classification method approach is used as a grouping of data based on data attachment to sample data. This study uses several classification methods, namely Naïve Bayes, Decision Tree, Support Vector Machine (SVM), Neural Network, Random Tree, Random Forest, dan K Nearest Neighbor (KNN). These methods were successfully compared to find out which method is the best to help recommend appropriate and accurate food crops based on the results of the classification performance of each method. Random Tree was chosen as the best method for the results of this performance comparison using discretization and normalization methods at the pre-processing stage of the data. It can be seen based on the results of the Accuracy, Precision, Recall, and F1-Score values on the use of discretization of 98%, respectively. Meanwhile, normalization showed that the results of the Accuracy, Precision, Recall, and F1-Score values are 99%, respectively.References
F. J. Kaunang, R. Rotikan, and G. S. Tulung, “Pemodelan Sistem Prediksi Tanaman Pangan Menggunakan Algoritma Decision Tree,†Cogito Smart Journal, vol. 4, no. 1. pp. 213–218, 2018.
S. Maesaroh and Kusrini, “Sistem Prediksi Produktifitas Pertanian Padi Menggunakan Data Mining,†Energy, J. Ilm. Ilmu-ilmu Tek., vol. 7, no. 2, pp. 25–30, 2017.
T. Setiadi, F. Noviyanto, H. Hardianto, A. Tarmuji, A. Fadlil, and M. Wibowo, “Implementation Of Naïve Bayes Method In Food Crops Planting Recommendation,†Int. J. Sci. Technol. Res., vol. 9, no. 02, pp. 4750–4755, 2020.
Y. Yanuari, M. G. Husada, and D. B. Utami, “Aplikasi Rekomendasi Jenis Tanaman Pangan Menggunakan Metode Simple Additive Weighting (SAW,†JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 3, no. 1, 2018.
S. M. S. Sianturi and N. A. Hasibuan, “ANALISA DATA PERTANIAN TANAMAN PANGAN UNTUK MEMPREDIKSI HASIL PANEN DENGAN DATA MINING PANGAN dan HOLTIKUTURA PROVINSI SUMUT ),†J. Pelita Inform., vol. 18, no. April, pp. 212–219, 2019.
D. W. Triscowati and S. Indonesia, “PELUANG DAN TANTANGAN DALAM PEMANFAATAN TEKNOLOGI PENGINDERAAN JAUH DAN MACHINE LEARNING UNTUK PREDIKSI DATA TANAMAN PANGAN YANG LEBIH AKURAT,†Semin. Nas. Off. Stat. 2019, no. October, 2019.
F. J. Kaunang, R. Rotikan, and G. S. Tulung, “Pemodelan Sistem Prediksi Tanaman Pangan Menggunakan Algoritma Decision Tree,†CogITo Smart J., vol. 4, no. 1, p. 213, 2018.
A. Rohman and M. Rochcham, “Komparasi Metode Klasifikasi Data Mining Untuk Prediksi Kelulusan Mahasiswa,†Neo Tek., vol. 5, no. 1, pp. 23–29, 2019.
W. D. Septiani, “KOMPARASI METODE KLASIFIKASI DATA MINING ALGORITMA C4.5 DAN NAIVE BAYES UNTUK PREDIKSI PENYAKIT HEPATITIS,†J. Pilar Nusa Mandiri, vol. 13, no. 1, pp. 76–84, 2017.
D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,†J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020.
T. Mardiana, H. Syahreva, and T. Tuslaela, “Komparasi Metode Klasifikasi Pada Analisis Sentimen Usaha Waralaba Berdasarkan Data Twitter,†J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 267–274, 2019.
I. Oktanisa and A. A. Supianto, “Perbandingan Teknik Klasifikasi Dalam Data Mining Untuk Bank a Comparison of Classification Techniques in Data Mining for,†Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, pp. 567–576, 2018.
M. Ustuner, M. T. Esetlili, F. B. Sanli, S. Abdikan, and Y. Kurucu, “Comparison of crop classification methods for the sustainable agriculture management,†J. Environ. Prot. Ecol., vol. 17, no. 2, pp. 648–655, 2016.
M. Wibowo, S. Sulaiman, and S. M. Shamsuddin, “Comparison of Prediction Methods for Air Pollution Data in Malaysia and Singapore,†Int. J. Innov. Comput., vol. 8, no. 3, pp. 65–71, 2018.
Derisma and F. Febrian, “Perbandingan Teknik Klasifikasi Neural Network , Support Vector Machine , dan Naive Bayes dalam Mendeteksi Kanker Payudara,†Bina Insa. ICT J., vol. 7, no. 1, pp. 53–62, 2020.
Hijrah, M. Mukhlizar, and T. M. A. Pandria, “Perbandingan Teknik Klasifikasi Untuk Memprediksi Kualitas Kinerja Karyawan,†J. Optim., vol. 6, no. 1, pp. 10–21, 2020.
M. Wibowo, S. Sulaiman, and S. M. Shamsuddin, “Machine Learning in Data Lake for Combining Data Silos,†Data Min. Big Data, vol. 10387, pp. 294–306, 2017.
M. Wibowo, F. Noviyanto, S. Sulaiman, and S. M. Shamsuddin, “Machine Learning Technique For Enhancing Classification Performance In Data Summarization Using Rough Set And Genetic Algorithm,†Int. J. Sci. Technol. Res., vol. 8, no. 10, pp. 1108–1119, 2019.
H. Yuliansyah, R. Adi, P. Imaniati, and M. Wibowo, “Predicting Students Graduate on Time Using C4 . 5 Algorithm,†J. Inf. Syst. Eng. Bus. Intell., vol. 7, no. 1, pp. 67–73, 2021.
R. Bello and R. Falcon, Rough sets in machine learning: A review, vol. 708, no. Ml. 2017.
Y. Kim, W. Ahn, K. J. Oh, and D. Enke, “An intelligent hybrid trading system for discovering trading rules for the futures market using rough sets and genetic algorithms,†Appl. Soft Comput., vol. 55, pp. 127–140, 2017.
D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,†Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019.
A. Ambarwari, Q. J. Adrian, and Y. Herdiyeni, “Analisis Pengaruh Data Scaling Terhadap Performa Algoritme Machine Learning untuk Identifikasi Tanaman,†J. Rekayasa Sist. dan Teknol. Inf., vol. 4, no. 1, pp. 117–112, 2020.
L. Jiang, C. Li, S. Wang, and L. Zhang, “Deep feature weighting for naive Bayes and its application to text classification,†Eng. Appl. Artif. Intell., vol. 52, pp. 26–39, 2016.
H. Zhang, Z.-X. Cao, M. Li, Y.-Z. Li, and C. Peng, “Novel naïve Bayes classification models for predicting the carcinogenicity of chemicals,†Food Chem. Toxicol., vol. 97, pp. 141–149, 2016.
S. T. Rizaldi and M. Mustakim, “Perbandingan Teknik Pembagian Data untuk Klasifikasi Sarana Akses Air pada Algoritma K- Nearest Neighbor dan Naïve Bayes Classifier,†Semin. Nas. Teknol. Informasi, Komun. dan Ind. 12, pp. 130–137, 2020.
O. R. Indriani, E. J. Kusuma, C. A. Sari, E. H. Rachmawanto, and D. R. I. M. Setiadi, “Tomatoes classification using K-NN based on GLCM and HSV color space,†Proc. - 2017 Int. Conf. Innov. Creat. Inf. Technol. Comput. Intell. IoT, ICITech 2017, vol. 2018-Janua, pp. 1–6, 2018.
J. Bofana et al., “Comparison of different cropland classification methods under diversified agroecological conditions in the Zambezi River Basin,†Remote Sens., vol. 12, no. 13, 2020.
S. Pudumalar and E. Ramanujam, “Crop Recommendation System for Precision Agriculture,†IEEE Eighth Int. Conf. Adv. Comput. Crop, pp. 32–36, 2016.
M. Wibowo, S. Sulaiman, S. Mariyam, and H. Hashim, “Mobile Analytics Database Summarization Using Rough Set,†Int. J. Innov. Comput., vol. 7, no. 2, pp. 6–12, 2017.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).