Penerapan Metode Data Mining Pada Point of Sale Berbasis Web Menggunakan Algoritma Apriori
DOI:
https://doi.org/10.30865/mib.v5i3.3085Keywords:
Data Mining, Algortms Apriori, Association Rules, Support, ConfidienceAbstract
To be able to understand which products have been purchased by customers, it is done by describing the habits when customers buy. Use association rules to detect items purchased at the same time. This study uses an a priori algorithm to determine the association rules when buying goods. The results of the study and analyzing the data obtained a statement that using the a priori algorithm to select the combined itemset using a minimum support of 25% and a minimum confidence of 100%, found the association rule, namely, if the customer buys at the same time. Buying goods has the highest value of support and trust. Likewise with the support value of 25%, the confidence value is 100%. In this way, if a customer buys an item, the probability that the customer buys the item is 100%References
C.Pradeepkumar and S.Loganathan, “Penerapan Metode Asosiasi Menggunakan Algoritma Apriori Pada Aplikasi Pola Belanja Konsumen ( Studi Kasus Toko Buku Gramedia Bintaro ),†Int. J. Sci. Eng. Res. (IJ0SER), vol. 3, no. 4, pp. 120–127, 2015, [Online]. Available: http://journal.uinjkt.ac.id/index.php/ti/article/view/5602/3619.
Amrin Amrin, “Data Mining Dengan Algoritma Apriori untuk Penentuan Aturan Asosiasi Pola Pembelian Pupuk,†Paradigma, vol. XIX, no. 1, pp. 74–79, 2017, doi: https://doi.org/10.31294/p.v19i1.1836.
A. Setiawan and F. P. Putri, “Implementasi Algoritma Apriori untuk Rekomendasi Kombinasi Produk Penjualan,†vol. XII, no. 1, pp. 66–71, 2020.
I. Djamaludin et al., “Analisis pola pembelian konsumen pada transaksi penjualan menggunakan algoritma apriori,†vol. 8, no. 2, pp. 671–678, 2017.
D. Fernando, “PENERAPAN DATA MINING REKOMENDASI BUKU MENGGUNAKAN ALGORITMA APRIORI,†vol. 7, no. 1, pp. 50–56, 2020.
B. A. Najib and N. Suryani, “Penerapan Data Mining Terhadap Data Penjualan Lapis Bogor Sangkuriang Dengan Metode Algoritma Apriori,†vol. VI, no. 1, pp. 61–70, 2020, doi: 10.31294/jtk.v4i2.
S. Budiman and S. P. A. Kesehatan, “Data Mining Apriori.â€
M. B. Program et al., “Algoritma Asosiasi Dengan Algoritma Apriori Untuk Analisa Data Penjualan,†J. Pilar Nusa Mandiri, vol. XII, no. 2, pp. 121–129, 2016, [Online]. Available: http://ejournal.nusamandiri.ac.id/index.php/pilar/article/view/266.
D. Sepri and M. Afdal, “Analisa Dan Perbandingan Metode Algoritma Apriori Dan Fp-Growth Untuk Mencari Pola Daerah Strategis,†J. Sist. Inf. Kaputama, vol. 1, no. 1, pp. 47–55, 2017.
D. D. Prayitno, “Ekstraksi Pola Hubungan Penerimaan Mahasiswa Baru Dengan Sebaran Wilayah Asal Sekolah Menggunakan ARM Algoritma Apriori,†J. Tek. Inform. dan Sist. Inf., vol. 3, no. 1, pp. 46–56, 2017, doi: 10.28932/jutisi.v3i1.566.
A. F. Lestari and M. Hafiz, “Penerapan Algoritma Apriori Pada Data Penjualan Barbar Warehouse,†INOVTEK Polbeng - Seri Inform., vol. 5, no. 1, p. 96, 2020, doi: 10.35314/isi.v5i1.1317.
P. Itb, A. Dahlan, D. E. Sastie, and A. B. Pohan, “Analisa Algoritma Apriori Pada Pola Peminjaman Buku di,†vol. 4, pp. 136–143, 2020, doi: 10.30865/mib.v4i1.1475.
Z. NURZANI and K. D. TANIA, “Analysis of Transactions 212 Mart Kuto Palembang to Find Frequent Patterns Among Itemset Using Association Rule Mining,†vol. 172, no. Siconian 2019, pp. 325–332, 2020, doi: 10.2991/aisr.k.200424.049.
R. Takdirillah, “Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan,†Edumatic J. Pendidik. Inform., vol. 4, no. 1, pp. 37–46, 2020, doi: 10.29408/edumatic.v4i1.2081.
T. Akhir, “Sistem Rekomendasi Promo Pada Minimarket Menggunakan Algoritma Apriori,†2020.
“PENERAPAN METODE ASSOCIATION RULE MINING UNTUK ANALISIS DAN IMPLEMENTASI TEKNIK DATA MINING DALAM MEMPREDIKSI,†pp. 151–160.
H. N. Wulandari and N. W. Rahayu, “Pemanfaatan Algoritma Apriori untuk Perancangan Ulang Tata Letak Barang di Toko Busana,†Semin. Nas. Apl. Teknol. Inf. ( SNATI ), vol. 6, no., p. D-33-D-38, 2014.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).