Studi Komparasi Metode Machine Learning untuk Klasifikasi Citra Huruf Vokal Hiragana

Authors

  • Muhammad Afrizal Amrustian Institut Teknologi Telkom Purwokerto, Purwokerto
  • Vika Febri Muliati Universitas Siber Asia, Jakarta
  • Elsa Elvira Awal Universitas Buana Perjuangan Karawang, Karawang

DOI:

https://doi.org/10.30865/mib.v5i3.3083

Keywords:

Hiragana, Image Classification, Naïve Bayes, SVM, Decision Tree, Random Forest, KNN

Abstract

Japanese is one of the most difficult languages to understand and read. Japanese writing that does not use the alphabet is the reason for the difficulty of the Japanese language to read. There are three types of Japanese, namely kanji, katakana, and hiragana. Hiragana letters are the most commonly used type of writing. In addition, hiragana has a cursive nature, so each person's writing will be different. Machine learning methods can be used to read Japanese letters by recognizing the image of the letters. The Japanese letters that are used in this study are hiragana vowels. This study focuses on conducting a comparative study of machine learning methods for the image classification of Japanese letters. The machine learning methods that were successfully compared are Naïve Bayes, Support Vector Machine, Decision Tree, Random Forest, and K-Nearest Neighbor. The results of the comparative study show that the K-Nearest Neighbor method is the best method for image classification of hiragana vowels. K-Nearest Neighbor gets an accuracy of 89.4% with a low error rate.

Author Biographies

Muhammad Afrizal Amrustian, Institut Teknologi Telkom Purwokerto, Purwokerto

Informatika

Vika Febri Muliati, Universitas Siber Asia, Jakarta

Sistem Informasi

Elsa Elvira Awal, Universitas Buana Perjuangan Karawang, Karawang

Informatika

References

P. UNIDA, “Bahasa Tersulit di Dunia, Memang ada Bahasa yang Sulit?,†2020. [Online]. Available: http://pps.unida.gontor.ac.id/bahasa-tersulit-di-dunia-memang-ada-bahasa-yang-sulit/. [Accessed: 11-Jun-2021].

R. Eriawan and M. A. Putri, “Faktor Penyebab Kesulitan Belajar Bahasa Jepang Mahasiswa Tahun Masuk 2018 Kelas International Program Strudi Pendidikan Bahasa Inggris UNP,†OMIYAGE, vol. 3, no. 2, pp. 20–32, 2020.

S. Monoarfa, “Tingkat Kemampuan Membaca Teks Berbahasa Jepang Dalam Penguasaan Huruf Kanji Sebagai Dasar Terjemahan Yang Tepat,†Stud. Soc. Sci., vol. 2, no. 1, p. 22, 2019.

R. I. Arief, L. Wahyuni, and K. Puspita, “Penerapan Metode Linear Congruent Method ( Lcm ) Pada Perangkat Lunak Tebak Huruf Hiragana Berbasis Android,†IT J., vol. 7, no. 1, pp. 63–72, 2019.

S. Aulia and A. Setiawan, “Pengenalan Tulisan Tangan Karakter Hiragana Menggunakan Dct, Dwt, Dan K-Nearest Neighbor,†J. Elektro dan Telekomun. Terap., vol. 4, no. 1, p. 467, 2017.

C. Umam and L. Budi Handoko, “Convolutional Neural Network (CNN) Untuk Identifkasi Karakter Hiragana,†in Prosiding Seminar Nasional Lppm Ump, 2020, vol. 0, no. 0, pp. 527–533.

R. Umar, I. Riadi, and D. A. Faroek, “Komparasi Image Matching Menggunakan Metode K-Nearest Neighbor ( KNN ) dan Metode Support Vector Machine ( SVM ),†J. Appl. Informatics Comput., vol. 4, no. 2, pp. 124–131, 2020.

K. Auliasari and M. Kertaningtyas, “Studi Komparasi Klasifikasi Pola Tekstur Citra Digital Menggunakan Metode K-Means Dan Naïve Bayes,†J. Inform., vol. 18, no. 2, pp. 175–185, 2018.

S. Hartono, H. Sujaini, and A. Perwitasari, “Komparasi Algoritma Nonparametrik untuk Klasifikasi Citra Wajah Berdasarkan Suku di Indonesia,†J. Edukasi dan Penelit. Inform., vol. 6, no. 3, pp. 338–343, 2020.

H. Sulaiman, D. Riana, and A. Rifai, “Perbandingan Algoritma Decision Tree C4 . 5 dan Naive Bayes pada Analisis Tekstur Gray Level Co - occurrence Matrix Menggunakan Citra Wajah,†vol. 10, pp. 470–479, 2021.

D. Abdullah and E. D. Putra, “Komparasi Perbaikan Kualitas Segmentasi Pada Citra Digital Metode Fuzzy C-Means Dan Otsu,†Pseudocode, vol. 4, no. 1, pp. 71–80, 2017.

D. S. Tobias and A. R. Widiarti, “Deteksi Glaukoma pada Citra Fundus Retina dengan Metode K-Nearest Neighbor,†in Seminar Nasional Ilmu Komputer(SNIK 2016), 2016, pp. 92–99.

F. Muwardi and A. Fadlil, “Sistem Pengenalan Bunga Berbasis Pengolahan Citra dan Pengklasifikasi Jarak,†J. Ilm. Tek. Elektro Komput. dan Inform., vol. 3, no. 2, pp. 124–131, 2017.

D. Berrar, “Cross-validation,†Encycl. Bioinforma. Comput. Biol. ABC Bioinforma., vol. 1, pp. 542–545, 2018.

M. Vadivukarassi, N. Puviarasan, and P. Aruna, “Sentimental Analysis of Tweets Using Naive Bayes Algorithm,†World Appl. Sci. J., vol. 35, no. 1, pp. 54–59, 2017.

E. Ahishakiye, E. O. Omulo, D. Taremwa, and I. Niyonzima, “Crime prediction using Decision Tree (J48) classification algorithm,†Int. J. Comput. Inf. Technol., vol. 06, no. 03, pp. 188–195, 2017.

T. B. Sasongko, “Komparasi dan Analisis Kinerja Model Algoritma SVM dan PSO-SVM (Studi Kasus Klasifikasi Jalur Minat SMA),†J. Tek. Inform. dan Sist. Inf., vol. 2, no. 2, pp. 244–253, 2016.

F. Rahutomo, P. Y. Saputra, and M. A. Fidyawan, “IMPLEMENTASI TWITTER SENTIMENT ANALYSIS UNTUK REVIEW FILM MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,†J. Inform. Polinema, vol. 4, no. 2, pp. 93–100, 2016.

Y. Xu, X. Zhao, Y. Chen, and Z. Yang, “Research on a mixed gas classification algorithm based on extreme random tree,†Appl. Sci., vol. 9, no. 9, 2019.

Mustakim and G. Oktaviani F, “Algoritma K-Nearest Neighbor Classification Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa,†vol. 13, no. 2, pp. 195–202, 2016.

A. Pandey and A. Jain, “Comparative Analysis of KNN Algorithm using Various Normalization Techniques,†Int. J. Comput. Netw. Inf. Secur., vol. 9, no. 11, pp. 36–42, 2017.

Downloads

Published

2021-07-31

Issue

Section

Articles