Prediksi Persediaan Perlengkapan Hewan Peliharaan Pada Toko Poopy Cat Store Menggunakan Algoritma Apriori
DOI:
https://doi.org/10.30865/mib.v5i3.3063Keywords:
Inventory Prediction, Data Mining, Apriori AlgorithmAbstract
Pets such as tame animals of various types such as cats, dogs, rabbits and others are one of the pleasures for animal lovers in having a desire to meet the needs and protect the animal from everything, difficulty in predicting the tendency of the breed. the goods to be purchased by consumers make shop owners often run out of items that are needed by consumers, this is because buyers do not make transactions and can reduce profit income to the store so it is necessary to extract information on data on buying and selling data or transaction data, in the application of extracting information using data mining methods with the APRIORI algorithm approach which is able to assist in finding out items of pet equipment from the number of sales, the results obtained from using this algorithm show the combination of the most frequent purchases carried out simultaneously on the supply of pet equipment so that it shows items that need to be stocked up more, the results obtained meet the previously set support and confidence values of 25% and 50%, the results obtained by 3 items Bolt 10 gr, Cage, Bowl get the highest value of 65%
References
D. Gunawan, “Evaluasi Performa Pemecahan Database dengan Metode Klasifikasi Pada Data Preprocessing Data mining,†Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 2, no. 1, p. 10, 2016.
J. S. Anggri Puspita Sari, Dina Dewi Anggraini, Marlynda Happy Nurmalita Sari, Dyah Gandasari, Valentine Siagian, Ri Sabti Septarini, Diena Dwidienawati Tjiptadi, Oris Krianto Sulaiman, Muhammad Munsarif, Prima Andreas Siregar, Nur Arif Nugraha, Kewirausahaan dan Bisnis Online, 1st ed. Yayasan Kita Menulis, 2020.
I. Waspada, “Percepatan Adopsi Sistem Transaksi Teknologi Informasi Untuk Meningkatkan Aksesibilitas Layanan Jasa Perbankan,†J. Keuang. dan Perbank., vol. 16, no. 1, pp. 122–131, 2012.
J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques. .
A. Setiawan and R. Mulyanti, “Market Basket Analysis dengan Algoritma Apriori pada Ecommerce Toko Busana Muslim Trendy,†JUITA J. Inform., vol. 8, no. 1, p. 11, 2020.
D. Evanko, “Optical imaging of the native brain,†Nat. Methods, vol. 7, no. 1, p. 34, 2010.
R. M. Simanjorang, “Implementation of Apriori Algorithm in Determining the Level of Printing Needs,†Infokum, vol. 8, no. 2, Juni, pp. 43–48, 2020.
P. C. Hsieh et al., “Combination of Acupoints in Treating Patients with Chronic Obstructive Pulmonary Disease: An Apriori Algorithm-Based Association Rule Analysis,†Evidence-based Complement. Altern. Med., vol. 2020, 2020.
Y. Yendrizal, “Data Mining Penjualan Tanaman Hias dengan Algoritma APRIORI Pada Toko Flores Elishabet,†J. Media Inform. Budidarma, vol. 4, no. 2, p. 472, 2020.
R. Rismanto, L. Darmawan, and A. Prasetyo, “Penerapan Algoritma Apriori Dalam,†vol. 04, no. 02, pp. 97–102, 2017.
Albi Anggito and Johan Setiawan, Metodologi Penelitian Kuantitatif. Jawa Barat: CV Jejak, 2018.
E. W. Winarni, Teori dan Praktik Penelitian Kualitatif dan Kuantitatif PTK dan R&D. Jakarta: Bumi Aksara, 2018.
S. Robo, T. Trisno, S. Sunardi, and S. Santosa, “Perencanaan strategis sistem informasi menggunakan Enterprise Architecture Planning pada PT. Karya Cipta Buana Sentosa Maumere,†Regist. J. Ilm. Teknol. Sist. Inf., vol. 4, no. 1, p. 41, 2018.
E. Buulolo, Data Mining Untuk Perguruan Tinggi. Deepublish, 2020.
D. P. Utomo, P. Sirait, and R. Yunis, “Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5. 0,†J. Media Inform. Budidarma, vol. 4, no. 4, pp. 994–1006, 2020.
V. N. Budiyasari, P. Studi, T. Informatika, F. Teknik, U. Nusantara, and P. Kediri, “Implementasi Data Mining Pada Penjualan Sepatu Dengan Menggunakan Algoritma Apriori,†vol. 2, no. 2, pp. 1–8, 2017.
N. Adha, L. T. Sianturi, and E. R. Siagian, “IMPLEMENTASI DATA MINING PENJUALAN SABUN DENGAN MENGGUNAKAN METODE APRIORI ( Studi Kasus : PT. Unilever),†Maj. Ilm. INTI, vol. 12, no. 2, pp. 219–223, 2017.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).