Analisis Perbandingan Kinerja Algoritma Naïve Bayes, Decision Tree-J48 dan Lazy-IBK
DOI:
https://doi.org/10.30865/mib.v5i3.3055Keywords:
Naïve Bayes, Decision Tree-J48, Lazy-IBK, UCI Machine LearningAbstract
This research is focused on knowing the performance of the classification algorithms, namely Naïve Bayes, Decision Tree-J48 and K-Nearest Neighbor. The speed and the percentage of accuracy in this study are the benchmarks for the performance of the algorithm. This study uses the Breast Cancer and Thoracic Surgery dataset, which is downloaded on the UCI Machine Learning Repository website. Using the help of Weka software Version 3.8.5 to find out the classification algorithm testing. The results show that the J-48 Decision Tree algorithm has the best accuracy, namely 75.6% in the cross-validation test mode for the Breast Cancer dataset and 84.5% for the Thoracic Surgery dataset.
References
F. Ma’arif and T. Arifin, “Optimasi Fitur Menggunakan Backward Elimination Dan Algoritma SVM Untuk Klasifikasi Kanker Payudara,†J. Inform., vol. 4, no. 1, pp. 46–53, 2017.
A. Handayani, A. Jamal, and A. A. Septiandri, “350-565-1-Sm,†vol. 6, no. 4, pp. 394–403, 2017.
Y. A. Setyadi, I. Asror, Y. Firdaus, and A. Wibowo, “Prediksi Harapan Hidup Pasca Operasi Toraks pada Pasien Penderita Kanker Paru-paru Menggunakan Metode Genetic Algorithm untuk Feature Selection dan Naïve Bayes Classifier,†vol. 7, no. 2, pp. 8349–8360, 2020.
I. F. Anshori and D. Riana, “Prediksi Harapan Hidup Pasien Kanker Paru-Paru Pasca Operasi Bedah Thoraks Menggunakan Boosted Neural Network Dan Smote,†vol. 6, no. 1, pp. 9–15, 2021.
I. K. Juni Arta, G. Indrawan, and G. R. Dantes, “Data Mining Rekomendasi Calon Mahasiswa Berprestasi Di Stmik Denpasar Menggunakan Metode Technique for Others Reference By Similarity To Ideal Solution,†JST (Jurnal Sains dan Teknol., vol. 5, no. 2, p. 792, 2017, doi: 10.23887/jst-undiksha.v5i2.8549.
P. Analisa, D. A. N. Klasifikasi, C. Di, A. Rifa, G. G. Setiaji, and V. Vydia, “PENGGUNAAN METODE K-MEANS Fakultas Teknologi Informasi dan Komunikasi , Universitas Semarang,†vol. 15, no. 1, pp. 43–47, 2019.
D. Sartika and D. Indra, “Perbandingan Algoritma Klasifikasi Naive Bayes, Nearest Neighbour, dan Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian,†J. Tek. Inform. Dan Sist. Inf., vol. 1, no. 2, pp. 151–161, 2017.
A. R. Kadafi, “Perbandingan Algoritma Klasifikasi Untuk Penjurusan Siswa SMA,†J. ELTIKOM, vol. 2, no. 2, pp. 67–77, 2018, doi: 10.31961/eltikom.v2i2.86.
N. A. Setifani, D. N. Fitriana, and A. Yusuf, “Perbandingan Algoritma Naïve Bayes, Svm, Dan Decision Tree Untuk Klasifikasi Sms Spam,†JUSIM (Jurnal Sist. Inf. Musirawas), vol. 5, no. 02, pp. 153–160, 2020, doi: 10.32767/jusim.v5i02.956.
D. Yunita, “Perbandingan Algoritma K-Nearest Neighbor dan Decision Tree untuk Penentuan Risiko Kredit Kepemilikan Mobil,†J. Inform. Univ. Pamulang, vol. 2, no. 2, p. 103, 2017, doi: 10.32493/informatika.v2i2.1512.
Ardiyansyah, P. A. Rahayuningsih, and R. Maulana, “Analisis Perbandingan Algoritma Klasifikasi Data Mining Untuk Dataset Blogger Dengan Rapid Miner,†J. Khatulistiwa Inform., vol. VI, no. 1, pp. 20–28, 2018.
P. D. Putra and D. P. Rini, “Prediksi Penyakit Jantung dengan Algoritma Klasifikasi,†Pros. Annu. Res. Semin. 2019, vol. 5, no. 1, pp. 978–979, 2019.
P. Kasih, “Pemodelan Data Mining Decision Tree Dengan Classification Error Untuk Seleksi Calon Anggota Tim Paduan Suara,†Innov. Res. Informatics, vol. 1, no. 2, pp. 63–69, 2019, doi: 10.37058/innovatics.v1i2.918.
D. Noviana, Y. Susanti, and I. Susanto, “Analisis Rekomendasi Penerima Beasiswa Menggunakan Algoritma K-Nearest Neighbor (K-NN) dan Algoritma C4.5,†Semin. Nas. Penelit. Pendidik. Mat. 2019 UMT, pp. 79–87, 2019.
I. Mubarog, A. Setyanto, and H. Sismoro, “Sistem Klasifikasi Pada Penyakit Breast Cancer Dengan Menggunakan Metode Naïve Bayes,†Creat. Inf. Technol. J., vol. 6, no. 2, p. 109, 2021, doi: 10.24076/citec.2019v6i2.246.
I. A. Nikmatun and I. Waspada, “Implementasi Data Mining untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,†J. SIMETRIS, vol. 10, no. 2, pp. 421–432, 2019.
D. A. Adeniyi, Z. Wei, and Y. Yongquan, “Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method,†Appl. Comput. Informatics, vol. 12, no. 1, pp. 90–108, 2016, doi: 10.1016/j.aci.2014.10.001.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).