Implementasi K-Nearest Neighbor Dalam Prediksi Mahasiswa Berhenti Kuliah

Authors

  • Yunita Yunita STMIK Widya Cipta Dharma, Samarinda

DOI:

https://doi.org/10.30865/mib.v5i3.3049

Keywords:

Data Mining, K-NN, Students Quit College

Abstract

A student is a student who sits and is registered in one of the universities, both public and private, being a student is the dream of many students around the world and being a student is the starting gate to determine someone will be in the world of science in what field, be it computer science, medicine, world of education and others. However, there are many reasons why students decide to stop attending lectures suddenly due to several factors, both external and internal factors. This causes its own losses that will be faced by the campus, one of which is the reduction in the quantity of student data and resulting in data accumulation, it is necessary to predict students who have the potential to stop studying unilaterally by looking at several criteria and digging up information on the data of students who have the potential to quit college by applying the K-algorithm. NN. In this study, the K-NN algorithm records old data and sees similarities to new data in an effort to recognize patterns of students dropping out of college, the results obtained from new lecture data show that the data is similar to the old data of students who dropped out of college with the closest similarity of values from other cases, namely 17 .3815 with 19.98875 so that the results obtained by the new data student decision decided the possibility of dropping out of college

References

K. Arizona, Z. Abidin, and R. Rumansyah, “Pembelajaran Online Berbasis Proyek Salah Satu Solusi Kegiatan Belajar Mengajar Di Tengah Pandemi Covid-19,†J. Ilm. Profesi Pendidik., vol. 5, no. 1, pp. 64–70, 2020.

M. A. Firmansyah, “Analisis Hambatan Belajar Mahasiswa Pada Mata Kuliah Statistika,†J. Penelit. dan Pembelajaran Mat., vol. 10, no. 2, 2017.

M. Muhamad, A. P. Windarto, and S. Suhada, “Penerapan Algoritma C4.5 Pada Klasifikasi Potensi Siswa Drop Out,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 1–8, 2019.

D. A. Anggoro and N. D. Kurnia, “Comparison of accuracy level of support vector machine (SVM) and K-nearest neighbors (KNN) algorithms in predicting heart disease,†Int. J. Emerg. Trends Eng. Res., vol. 8, no. 5, pp. 1689–1694, 2020.

E. P. W. Mandala, “Data Mining Algoritma Nearest Neighbor Untuk Memprediksi Tingkat Resiko Pinjaman Dana Di Bank Perkreditan Rakyat,†JIK J. Ilmu Komput., vol. 1, no. 2, pp. 91–103, 2016.

M. I. Maulana and A. A. Soebroto, “Klasifikasi Tingkat Stres Berdasarkan Tweet pada Akun Twitter menggunakan Metode Improved k-Nearest Neighbor dan Seleksi Fitur Chi- square,†vol. 3, no. 7, pp. 6662–6669, 2019.

V. Alfani, “Data Mining Untuk Klasifikasi Pinjaman Kredit Pensiunan Menggunakan Algoritma K-Nearest Neighbor,†J. Pelita Inform., vol. 18, no. April, pp. 281–286, 2019.

J. T. Informatika and U. Sriwijaya, “Prediksi Cuaca di Kota Palembang Berbasis,†pp. 9–18.

Albi Anggito and Johan Setiawan, Metodologi Penelitian Kuantitatif. Jawa Barat: CV Jejak, 2018.

G. Hendro, T. B. Adji, and N. A. Setiawan, “Penggunaan Metodologi Analisa Komponen Utama ( PCA ) untuk Mereduksi Faktor-Faktor yang Mempengaruhi Penyakit Jantung Koroner,†Semin. Nas. ScrETec, pp. 1–5, 2012.

E. W. Winarni, Teori dan Praktik Penelitian Kualitatif dan Kuantitatif PTK dan R&D. Jakarta: Bumi Aksara, 2018.

E. Buulolo, Data Mining Untuk Perguruan Tinggi. Deepublish, 2020.

M. P. Simatupang and D. P. Utomo, “Analisa Testimonial Dengan Menggunakan Algoritma Text Mining Dan Term Frequency- Inverse Document Frequence (Tf-Idf) Pada Toko Allmeeart,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 808–814, 2019.

Y. Zhang, G. Cao, B. Wang, and X. Li, “A novel ensemble method for k-nearest neighbor,†Pattern Recognit., vol. 85, pp. 13–25, 2019.

M. R. Islam, A. R. M. Kamal, N. Sultana, R. Islam, M. A. Moni, and A. Ulhaq, “Detecting Depression Using K-Nearest Neighbors (KNN) Classification Technique,†Int. Conf. Comput. Commun. Chem. Mater. Electron. Eng. IC4ME2 2018, no. February, pp. 1–4, 2018.

M. T. Masud, M. A. Mamun, K. Thapa, D. H. Lee, M. D. Griffiths, and S. H. Yang, “Unobtrusive monitoring of behavior and movement patterns to detect clinical depression severity level via smartphone,†J. Biomed. Inform., vol. 103, 2020.

A. Adiwijaya, M. N. Aulia, M. S. Mubarok, U. N. W, and F. Nhita, “A Comparative Study of MFCC-KNN and LPC-KNN for Hijaiyyah Letters Pronounciation Classification System,†in International Conference on Information and Communication Technology (ICoICT), 2017.

Downloads

Published

2021-07-31

Issue

Section

Articles