Prototipe Light Meter Fotografi Studio Menggunakan Mikrokontroler ATMega328 Berbasis Sensor Cahaya dan Warna

Authors

  • Chairul Gunawan Universitas Nasional, Jakarta
  • Fauziah Fauziah Universitas Nasional, Jakarta
  • Nur Hayati Universitas Nasional, Jakarta

DOI:

https://doi.org/10.30865/mib.v5i3.3043

Keywords:

Light Meter, Arduino Nano V3, ATMega328, Photography, Lux Meter, TSL2561, TCS34725

Abstract

Accuracy in calculating exposure in photographic techniques is the key to being able to produce good quality photos. The light calculation includes three elements (Triangel Exposure), namely shutter speed (shutter speed / t), ISO sensitivity, and diaphragm (aperture / f). A light meter is a tool for calculating lighting in the world of photography to accurately calculate the light falling in or around the object to be photographed. The light meter has a working principle like a lux meter calculates the value of light intensity in a place. However, on a light meter for photography, there is a calculation of a triangle exposure in it. This light meter prototype uses an ATMega328 microcontroller on the Arduino Nano V3 with the help of a TSL2561 light sensor and a TCS34725 RGB color sensor. Tests were carried out by comparing the output value using an original light meter, namely Sekonik Flashmate L-308X with the continuous light shooting method. The results of the test using the original tool with the ATMega328 microcontroller produced values above 90%.

References

J. Bernacki, “Automatic exposure algorithms for digital photography,†Multimed. Tools Appl., vol. 79, no. 19–20, pp. 12751–12776, May 2020, doi: 10.1007/s11042-019-08318-1.

D. K. Rath, “Arduino Based : Smart Light Control System,†Int. J. Eng. Res. Gen. Sci., vol. 4, no. 2, pp. 784–790, 2016.

V. Kanakaris, G. A. Papakostas, and D. V. Bandekas, “Power consumption analysis on an IoT network based on wemos: A case study,†Telkomnika (Telecommunication Comput. Electron. Control., vol. 17, no. 5, pp. 2505–2511, 2019, doi: 10.12928/TELKOMNIKA.v17i5.11317.

R. Hrbac, V. Kolar, T. Novak, and M. Bartłomiejczyk, “Prototype of a low-cost luxmeter with wide measuring range designed for railway stations dynamic lighting systems,†Proc. 2014 15th Int. Sci. Conf. Electr. Power Eng. EPE 2014, no. May, pp. 665–670, 2014, doi: 10.1109/EPE.2014.6839496.

L. M. Parera, H. K. Tupan, and V. Puturuhu, “Analisis Pengaruh Intensitas Penerangan Pada Laboratorium Dan Bengkel Jurusan Teknik Elektro,†J. Simetrik, vol. 8, no. 1, pp. 60–67, 2018, doi: 10.31959/js.v8i1.72.

B. Y. Prawira et al., “Efisiensi Pencahayaan Ruangan Perkuliahan dengan Logika Fuzzy,†J. Tek. Elektro dan Komput., vol. 7, no. 1, pp. 33–44, 2018, doi: 10.35793/jtek.7.1.2018.19183.

A. Rahmadiansyah, E. Orlanda, M. Wijaya, H. W. Nugroho, and R. Firmansyah, “Perancangan Sistem Telemetri Untuk Mengukur Intensitas Cahaya Berbasis Sensor Light Dependent Resistor Dan Arduino Uno,†J. Electr. Electron. Eng., vol. 1, no. 1, p. 15, 2017, doi: 10.21070/jeee-u.v1i1.760.

V. H. Iyer, “Dental Photography – an Image To Improve the Face of Dental Practice,†An Off. J. IDA, vol. 6, no. 2, pp. 52–57, 2019.

A. Jawaaz and R. Yousuf, “Light Dependent Resistor (LDR) Based Low Cost Light Intensity Measurement Circuit Design (LUX Meter),†Int. J. Innov. Res. Comput. Commun. Eng. (An ISO Certif. Organ., vol. 3297, no. 6, pp. 11449–11455, 2016, doi: 10.15680/IJIRCCE.2016.

A. Sonar, B. Amre, Y. Advankar, S. Babar, and T. M. Furia, “Calibration of Lux Meter using Comparison Method,†vol. 9, no. 3, pp. 720–724, 2021.

N. Fitrya, “Design Of Formalin Use Investigation System In Food Using Android-Based Tcs34725 Color Sensor,†vol. 4, pp. 2–4, 2019.

T. K. Woodstock and R. F. Karlicek, “RGB Color Sensors for Occupant Detection: An Alternative to PIR Sensors,†IEEE Sens. J., vol. 20, no. 20, pp. 12364–12373, 2020, doi: 10.1109/JSEN.2020.3000170.

P. Adaptive, R. Smart, and S. Incandescent, “Pervasive Adaptive Resourceful Smart Lighting Supporting Incandescent and LED Light Bulbs,†pp. 1–20, 2019, doi: 10.3390/s19092032.

N. K. Azis Bayu, “Rancang Bangun Alat Penyiram Sayuran Hidroponik Menggunakan Arduino Mega 2560,†J. Media Inform. Budidarma, vol. 5, no. Vol 5, No 1 (2021): MIB Januari 2021, pp. 124–128, 2021, doi: 10.30865/mib.v5i1.2584.

H. Andrianto, Arduino ; Belajar Cepat dan Pemrograman, Cet. I Jan. Bandung, 2016.

D. Dormann, “IntensityCheck – The light measuring app for microscope performance checks and consistent fluorescence imaging,†PLoS One, vol. 14, no. 3, pp. 1–19, 2019, doi: 10.1371/journal.pone.0214659.

D. D. Damayanti, H. G. Ariswati, I. D. G. Wisana, and H. Winarno, “Automatic Dehydration Level Detection Devices,†Indones. J. Electron. Electromed. Eng. Med. informatics, vol. 2, no. 2, pp. 87–94, 2020, doi: 10.35882/ijeeemi.v2i2.5.

P. Baum, “Using A Photographic Light Meter For Photometric Purposes Using A Photographic Light Meter For Photometric Purposes,†no. April, 2017, doi: 10.13140/RG.2.2.28771.76323.

Downloads

Published

2021-07-31

Issue

Section

Articles