Pengembangan Model Untuk Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu dengan Metode Naïve Bayes
DOI:
https://doi.org/10.30865/mib.v5i3.3030Keywords:
Naïve Bayes, Python 3, University, Student, AlumniAbstract
Many parameters affect the timeliness of student graduation, starting from the student's interest in certain majors, the type of class chosen, to the grades for each semester obtained. This is a determining factor in how students can graduate on time or not at the end of their education. So a model is needed to predict student graduation rates on time, using alumni data whose data is obtained from several universities in Palembang City. The model used is a Naïve Bayes algorithm which serves as a model for classification. The dataset used is alumni data that has been collected from several universities, while the attributes used are the Department, College, Class Type, Temporary IP Value from semester 1 to 4, graduation year, and college generation. Then from the attributes and models used, the researcher used the Python 3 programming language and the Jupyter Notebook tools to process the prepared dataset. Furthermore, the distribution of the dataset is divided by 70% for training data and 30% for testing data. To test the algorithmic process used by researchers using K-Fold Validation. The results of this study are the accuracy of the prediction model carried out, where the accuracy results obtained from the Python 3 programming language and the Naïve Bayes algorithm are 0.8103.
References
S. Syarli and A. A. Muin, “Metode Naive Bayes Untuk Prediksi Kelulusan (Studi Kasus: Data Mahasiswa Baru Perguruan Tinggi),†J. Ilmu Komput., vol. 2, no. 1, pp. 22–26, 2018.
I. Hidayanti, T. B. Kurniawan, and A. Afriyudi, “Perbandingan Dan Analisis Metode Klasifikasi Untuk Menentukan Konsentrasi Jurusan,†J. Ilm. Inform. Glob., vol. 11, no. 1, pp. 16–21, 2020, doi: 10.36982/jig.v11i1.1067.
A. H. Mirza, “Application of Naive Bayes Classifier Algorithm in Determining New Student Admission Promotion Strategies,†J. Inf. Syst. Informatics, vol. 1, no. 1, pp. 14–28, 2019, doi: 10.33557/journalisi.v1i1.2.
N. Yahya and A. Jananto, “Komparasi Kinerja Algoritma C.45 Dan Naive Bayes Untuk Prediksi Kegiatan Penerimaanmahasiswa Baru (Studi Kasus : Universitas Stikubank Semarang),†Pros. SENDI, no. 2014, pp. 978–979, 2019.
D. N. Chandra, G. Indrawan, and I. N. Sukajaya, “Klasifikasi Berita Lokal Radar Malang Menggunakan Metode Naïve Bayes Dengan Fitur N-Gram,†J. Ilmu Komput. Indones., vol. 4, no. 2, 2019.
E. Purnamasari, D. P. Rini, and Sukemi, “The Combination of Naive Bayes and Particle Swarm Optimization Methods of Student’s Graduation Prediction,†J. Ilm. Tek. Elektro Komput. dan Inform., vol. 5, no. 2, 2019, doi: 10.26555/jiteki.v5i2.15317.
S. D. Jadhav and H. P. Channe, “Comparative Study of K-NN, Naive Bayes and Decision Tree Classification Techniques,†Int. J. Sci. Res., vol. 5, no. 1, pp. 1842–1845, 2016, doi: 10.21275/v5i1.nov153131.
M. Mokhairi, H. Nawang, and S. N. Wan, “Analysis on Students Performance Using Naïve,†J. Theor. Appl. Inf. Technol., vol. 31, no. 16, pp. 3993–4000, 2017.
E. Sutoyo and A. Almaarif, “Educational Data Mining untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritme Naïve Bayes Classifier,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 95–101, 2020, doi: 10.29207/RESTI.V4I1.1502.
H. Prasetyo and W. Sutopo, “Perkembangan Keilmuan Teknik Industri Menuju Era,†Semin. dan Konf. Nas. IDEC 2017, pp. 488–496, 2017.
J. Sumpena and N. Kurnia, “Analisis Prediksi Kelulusan Siswa PKBM Paket C dengan Metoda Algoritma Naïve Bayes,†Tedc, vol. 13, no. 2, pp. 127–133, 2019.
D. L. Olson and D. Delen, Advanced Data Mining Techniques. Springer, 2008.
D. Aprilia, D. Aji Baskoro, L. Ambarwati, and I. W. S. Wicaksana, Belajar Data Mining Dengan Rapid Minner. 2013.
R. Y. Dillak, D. M. Pangestuty, and M. G. Bintiri, “Klasifikasi Jenis Musik Berdasarkan File Audio Menggunakan Jaringan Syaraf Tiruan Learning Vector Quantization,†Semin. Nas. Inform., vol. 2012, no. semnasIF, pp. 122–125, 2012.
D. A. Effendy, K. Kusrini, and S. Sudarmawan, “Classification of intrusion detection system (IDS) based on computer network,†Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng., 2017.
H. Jiawei and K. Micheline, Data mining: concepts and techniques second edition. 2006.
M. L. Abbot and J. McKinney, Understanding and applying research design. New Jersey: John Wiley & Sons, Inc, 2013.
M. Romzi and B. Kurniawan, “Pembelajaran Pemrograman Python Dengan Pendekatan Logika Algoritma,†J. Tek. Inform. Mahakarya, vol. 03, no. 2, pp. 37–44, 2020.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).