Fuzzy Neural Network (FNN) Pada Proses Identifikasi Penyakit ISPA
DOI:
https://doi.org/10.30865/mib.v5i3.3020Keywords:
Identification, ISPA Disease, Fuzzy Logic, Artificial Neural Network (ANN)Abstract
ISPA is a disease that can affect anyone from children, adolescents, adults, and even the elderly. The causes experienced by sufferers of this disease are quite simple, such as fever, runny nose, and cough. The discussion in this paper describes the process of ISPA disease identification by developing a Fuzzy Neural Network (FNN) model. The process will be optimized using Fuzzy Logic to form rules for the diagnostic process, then proceed with an Artificial Neural Network (ANN). This model can maximize the performance of ANN in the identification process so that the output given is quite precise and accurate. The results provided by Fuzzy Logic can describe the clarity of the rules in diagnosis by presenting several rules (rules) that are presented from the Fuzzyfication process to the Defuzzyfication process. The output obtained from the ANN process also shows quite perfect results with an average error value based on MSE of 0.00912 and accuracy value of 91.96%. With these results, it can be stated that the FNN model can be used in the ISPA diagnosis process so that the presentation of this paper aims to provide an alternative in the identification processReferences
Yuyun Priwahyuni, E. feroza Sinaga, Christine Vita Gloria, Agus Alamsyah, Ikhtiyaruddin Ikhtiyaruddin, and Iqlima Afif Azizah, “Cegah Penyakit ISPA di Puskesmas Kecamatan Limapuluh Kota Pekanbaru,†J. Pengabdi. UntukMu NegeRI, vol. 4, no. 1, pp. 54–59, 2020, doi: 10.37859/jpumri.v4i1.1829.
T. F. Ramadhani, I. Fitri, and E. T. E. Handayani, “Sistem Pakar Diagnosa Penyakit ISPA Berbasis Web Dengan Metode Forward Chaining,†JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 5, no. 2, p. 81, 2020, doi: 10.31328/jointecs.v5i2.1243.
A. M. Yunita and S. Susilawati, “Aplikasi Prediksi Penyebaran Penyakit Infeksi Saluran Pernafasan Akut (ISPA) Di Kabupaten Pandeglang,†J. Tek. Inform. UNIS, vol. 7, no. 2, pp. 109–114, 2020, doi: 10.33592/jutis.v7i2.391.
N. Latifatul A., “Hubungan Lingkungan Fisik Rumah dengan Kejadian Penyakit ISPA Pada Balita di desa Guyung Kecamatan Gerih Kabupaten Ngaw,†Hub. Lingkung. Fis. Rumah dengan Kejadian Penyakit ISPA Pada Balita di desa Guyung Kec. Gerih Kabupaten Ngaw, p. 116, 2019.
N. Khuriyah, “Hubungan Antara Riwayat Penyakit Ispa Dan Diare Dengan Status Gizi Pada Anak Di Wilayah Kerja Puskesmas Kaliwungu Kabupaten Kudus,†Pros. HEFA 1st 2017, 2017.
Y. Yuliana, P. Paradise, and K. Kusrini, “Sistem Pakar Diagnosa Penyakit Ispa Menggunakan Metode Naive Bayes Classifier Berbasis Web,†CSRID (Computer Sci. Res. Its Dev. Journal), vol. 10, no. 3, p. 127, 2021, doi: 10.22303/csrid.10.3.2018.127-138.
Edi Iskandar, “Sistem Pakar Untuk Diagnosa Penyakit ISPA Menggunakan Metode Faktor Kepastian,†J. Ilm. STMIK GI MDP, vol. 3, no. Sistem Pakar, pp. 9–16, 2007.
B. Sasangka and A. Witanti, “Sistem Pakar Diagnosa Penyakit Infeksi Saluran Pernafasan Akut Pada Anak Menggunakan Teorema Bayes,†JMAI (Jurnal Multimed. Artif. Intell., vol. 3, no. 2, pp. 45–51, 2019, doi: 10.26486/jmai.v3i2.83.
S. Arifin, M. A. Muslim, and S. Sugiman, “Implementasi Logika Fuzzy Mamdani untuk Mendeteksi Kerentanan Daerah Banjir di Semarang Utara,†Sci. J. Informatics, vol. 2, no. 2, p. 179, 2016, doi: 10.15294/sji.v2i2.5086.
H. Hardianto and N. Nurhasanah, “Identifikasi Penyakit pada Sel Darah Menggunakan Logika Fuzzy Mamdani,†Prism. Fis., vol. 7, no. 3, p. 269, 2020, doi: 10.26418/pf.v7i3.38106.
A. M. NUGRAHENI, “Sistem Pakar Deteksi Dini Tingkat Risiko pada Ibu Hamil terhadap Preeklampsia dengan Logika Fuzzy,†Perpust. Univ. Airlangga, pp. 1–198, 2016, [Online]. Available: http://repository.unair.ac.id/56050/.
B. Setia and P. T. Prasetyaningrum, Penerapan Metode Logika Fuzzy, vol. 2, no. 1. 2019.
S. Kiranyaz, T. Ince, A. Iosifidis, and M. Gabbouj, “Operational neural networks,†Neural Comput. Appl., vol. 32, no. 11, pp. 6645–6668, 2020, doi: 10.1007/s00521-020-04780-3.
P. K. Vadla, A. Ruwali, K. B. Prakash, M. V. P. Lakshmi, and G. R. Kanagachidambaresan, “Neural Network,†in EAI/Springer Innovations in Communication and Computing, 2021, pp. 39–43.
R. Bala and D. Kumar, “Classification Using ANN: A Review,†Int. J. Comput. Intell. Res., vol. 13, no. 7, pp. 1811–1820, 2017, [Online]. Available: http://www.ripublication.com.
E. Y. Puspaningrum, L. S. Qolby, and Y. V. Via, “OPTIMASI JARINGAN SARAF TIRUAN UNTUK DIAGNOSIS PENYAKIT DIABETES INDIAN PIMA,†Teknologi, vol. 6, no. 1, p. 49, 2016, doi: 10.26594/teknologi.v6i1.560.
L. Listyalina, E. L. Utari, and D. E. Puspaningtyas, “PENENTUAN PENYAKIT PARU DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN,†Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 1, pp. 233–240, 2020, doi: 10.24176/simet.v11i1.3667.
D. A. Dharmawan, “Deteksi Kanker Serviks Otomatis Berbasis Jaringan Saraf Tiruan LVQ dan DCT,†Jnteti, vol. 03, no. 04, pp. 269–272, 2014.
Z. A. Leleury and S. N. Aulele, “Perancangan Sistem Diagnosa Penyakit Saluran Pernapasan Menggunakan Metode Learning Vector Quantization (LVQ),†J. Mat. Integr., vol. 12, no. 1, p. 1, 2017, doi: 10.24198/jmi.v12.n1.10247.1-10.
A. Setiawan, B. Yanto, and K. Yasdomi, LOGIKA FUZZY Dengan MATLAB (Contoh Kasus Penelitian Penyakit Bayi dengan Fuzzy Tsukamoto), vol. 1, no. March. 2018.
B. Y. A. Setiawan, Logika Fuzzy Dengan Matlab, vol. 1, no. 13508029. 2018.
S. Sukamto, “Pengendalian Kecepatan Motor Induksi Menggunakan Kontroller Logika Fuzzy,†JEECAE (Journal Electr. Electron. Control. Automot. Eng., vol. 4, no. 1, pp. 245–252, 2019, doi: 10.32486/jeecae.v4i1.330.
W. Katrina, H. J. Damanik, F. Parhusip, D. Hartama, A. P. Windarto, and A. Wanto, “C.45 Classification Rules Model for Determining Students Level of Understanding of the Subject,†in Journal of Physics: Conference Series, 2019, vol. 1255, no. 1, doi: 10.1088/1742-6596/1255/1/012005.
E. A. Banurea, M. Syahrizal, and Murdani, “Jaringan Syaraf Tiruan untuk Memprediksi Jumlah Permintaan Pemasangan Indihome Dengan Metode Backpropagation,†J. Pelita Inform., vol. 17, no. 1, pp. 179–184, 2018.
N. Amalia, E. W. Hidayat, and A. P. Aldya, “Pengenalan Aksara Sunda Menggunakan Metode Jaringan Saraf Tiruan Backpropagation Dan Deteksi Tepi Canny,†CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 1, p. 19, 2020, doi: 10.24114/cess.v5i1.14839.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).