Penerapan Pengenalan Wajah Untuk Aplikasi Absensi dengan Metode Viola Jones dan Algoritam LBPH
DOI:
https://doi.org/10.30865/mib.v5i3.3008Keywords:
Facial Recognition, COVID-19, Attendance, Viola-Jones Method, LBPH AlgorithmAbstract
The human face can be used to assess because of its uniqueness based on certain parameters. To perform facial recognition, the first thing that needs to be done is face detection. The author uses the Viola-Jones method to detect faces. The Viola-Jones method is known to have high speed and accuracy because it combines several concepts (Haar Features, Integral Image, AdaBoost, and Cascade Classifier) into the main method for handling objects. The principle of camera face recognition itself is that the captured face object will be processed and compared with all face images in the existing data set so that the identity of the face is known. One of the applications of face recognition is to do attendance with individual faces. The attendance process does not need physical contact interactions between humans and devices such as the fingerprint system so that during the current COVID-19 pandemic, the spread of the virus can reduce. In this research, a system that can be checked and a person's face is used as a leverage medium for arrival and return attendance using the Viola-Jones method and the LBPH algorithm. The language used is python with the OpenCV library. The PHP language is used for the user interface so that users perform attendance via a browser with the MySQL database to store attendance data. The result of the research is that using the Viola-Jones method and the LBPH algorithm faces are identified and the data is stored in the database used for data attendance. Distance and slope affect the results of face recognition. The distance is too close about 30 cm from the camera, the face cannot be detected. Instead of face position is too far approximately 200 cm, the face can still be detected but could not be identified. For a face tilt level of about 20o from perpendicular, it can still be recognized, but at a tilt degree of about 30o up or to the right, faces cannot be detected.
References
L. W. Alexander, S. R. Sentinuwo, A. M. Sambul, T. Informatika, U. Sam, and R. Manado, “Implementasi Algoritma Pengenalan Wajah Untuk Mendeteksi Visual Hacking,†J. Tek. Inform., vol. 11, no. 1, 2017, doi: 10.35793/jti.11.1.2017.16969.
A. Lazaro, J. L. Buliali, and B. Amaliah, “Deteksi Jenis Kendaraan di Jalan Menggunakan OpenCV,†J. Tek. ITS, vol. 6, no. 2, 2017, doi: 10.12962/j23373539.v6i2.23175.
F. R. Ilhamullah and S. A. Yogyakarta, “Sistem Deteksi Wajah Dan Sebuah Benda Menggunakan Algoritma Viola-Jones Berbasis Open Cv Menggunakan Algoritma Viola-Jones Using Viola-Jones Algorithm Based Open Cv,†no. January, 2020.
T. Paul, U. A. Shammi, and S. Kobashi, “A Study on Face Detection Using Viola-Jones Algorithm in Various Backgrounds, Angles and Distances,†Int. J. Biomed. Soft Comput. Hum. Sci. Off. J. Biomed. Fuzzy Syst. Assoc., vol. 23, no. 1, pp. 27–36, 2018, doi: 10.24466/ijbschs.23.1_27.
V. K. Sharma, “Designing of face recognition system,†2019 Int. Conf. Intell. Comput. Control Syst. ICCS 2019, no. Iciccs, pp. 459–461, 2019, doi: 10.1109/ICCS45141.2019.9065373.
H. Simaremare and A. Kurniawan, “Perbandingan Akurasi Pengenalan Wajah Menggunakan Metode LBPH dan Eigenface dalam Mengenali Tiga Wajah Sekaligus secara Real-Time,†J. Sains, Teknol. dan Ind., vol. 14, no. 1, pp. 66–71, 2016.
A. Fauzan, L. Novamizanti, and Y. N. Fuadah, “Perancangan Sistem Deteksi Wajah Untuk Presensi Kehadiran Menggunakan Metode LBPH ( Local Binary Pattern Histogram ) Berbasis Android,†e-Proceeding Eng., vol. 5, no. 3, pp. 5403–5413, 2018.
D. Kharat, P. Kajawe, S. Kopnar, N. Jinabade, and J. Wagh, “Face Recognition Using Local Binary Pattern Histogram ( LBPH ),†Int. J. Innov. Res. Sci. Eng. Technol., vol. 2, no. 4, pp. 10659–10662, 2019, doi: 10.15680/IJIRSET.2019.0811013.
P. R. Setiono, S. R. U. . Sompie, and M. E. . Najoan, “Aplikasi Pengenalan Wajah Untuk Sistem Absensi Kelas Berbasis Raspberry Pi,†J. Tek. Inform., vol. 15, no. 3, pp. 179–188, 2020.
M. Y. Florestiyanto, H. Himawan, and P. D. P. Silitonga, “Improved Viola-Jones Face Recognition UsingTracking,†TEST Enginering Manaj., vol. 3, no. 3945, pp. 3945–3952, 2020.
Mahmudi, M. Fatahillah, and Kusrini, “Implementasi Metode Viola Jones Untuk Mendeteksi Wajah Manusia,†J. Inf., vol. 5, no. 1, pp. 2442–7942, 2019, [Online]. Available: http://www.informa.poltekindonusa.ac.id/index.php/informa/article/view/69.
F. Setiawan and D. A. R, “Sistem Pengenalan Wajah Dengan Metode Local Binary Pattern Histogram Pada Firebase,†Semin. Nas. Teknol. Inf. dan Komun. STI&K, vol. 4, no. September, pp. 1–7, 2020.
W. Dwiparaswati, S. Kom, and S. V. Hilmawan, “Implementasi Face Recognition secara Real-time dengan Metode Haar Cascade Classifier menggunakan OpenCV-Python,†2017.
A. Suharso, “Pengenalan Wajah Menggunakan Metode Viola-Jones dan Eigenface Dengan Variasi Posisi Wajah Berbasis Webcam,†Techno Xplore J. Ilmu Komput. dan Teknol. Inf., vol. 1, no. 2, pp. 19–30, 2017, doi: 10.36805/technoxplore.v1i2.107.
K. Cen, “Study of Viola-Jones Real Time Face Detector,†Ai2 (ALLEN Inst. ARTIFICAL Intell., vol. 9, no. 10, pp. 1–94, 2016.
M. Khan, S. Chakraborty, R. Astya, and S. Khepra, “Face Detection and Recognition Using OpenCV,†Proc. - 2019 Int. Conf. Comput. Commun. Intell. Syst. ICCCIS 2019, vol. 2019-Janua, pp. 116–119, 2019, doi: 10.1109/ICCCIS48478.2019.8974493.
F. Deeba, A. Ahmed, H. Memon, F. A. Dharejo, and A. Ghaffar, “LBPH-based enhanced real-time face recognition,†Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp. 274–280, 2019, doi: 10.14569/ijacsa.2019.0100535.
T. Dhawle, U. Ukey, and R. Choudante, “Face Detection and Recognition Using OpenCV and Python,†Int. Res. J. Eng. Technol., vol. 07, no. 10, 2020.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).