Clustering Kanker Serviks Berdasarkan Perbandingan Euclidean dan Manhattan Menggunakan Metode K-Means

 (*)Slamet Widodo Mail (Universitas Bina Sarana Informatika, Jakarta, Indonesia)
 Herlambang Brawijaya (Universitas Bina Sarana Informatika, Jakarta, Indonesia)
 Samudi Samudi (STMIK Nusa Mandiri, Jakarta, Indonesia)

(*) Corresponding Author

DOI: http://dx.doi.org/10.30865/mib.v5i2.2947

Abstract

K-means a fairly simple and commonly used cluster of clusters to partition datasets into multiple clusters. Distance calculations are used to find similar data objects that lead to developing powerful algorithms for datamining such as classification and grouping. Some studies apply k-means algorithms using distance calculations such as Euclidean, Manhattan and Minkowski. The study used datasets from gynecological patients with a total of 401 patients examined and as many as 205 patients detected cervical cancer, while 196 other patients did not have cervical cancer. The results were shown with the help of confusion matrix and ROC curve, accuracy value obtained by 79.30% with ROC 79.17% on K-Means Euclidean Metric while K-Means Manhattan Metric by 67.83% with ROC 65.94%. Thus it can be concluded that the Euclidean method is the best method to be applied in the K-Means Clustering algorithm on cervical cancer datasets.

Keywords


Cervix; K-Means; Euclidean; Manhattan; Cluster

Full Text:

PDF


Article Metrics

Abstract view : 266 times
PDF - 69 times

References

B. Budiman, Y. Mulyana Hidayat, and A. Budi Harsono, “Evaluasi Program Deteksi Dini Kanker Serviks dengan Metode See and Treat di Kabupaten Karawang,” Indones. J. Obstet. Gynecol. Sci., vol. 2, no. 1, pp. 72–80, 2019, doi: 10.24198/obgynia.v2n1.77.

A. Rosiana and N. Tiara, “Pengaruh Psikoedukasi Keluarga Terhadap Kemampuan Perawtan Kebersihan Diri Pada anak Retardasi Mental Di SDLB P urwosari Kudus Tahun 2015,” Indones. J. Perawat, vol. 2, no. I, pp. 50–56, 2017, [Online]. Available: https://jurnal.ugm.ac.id/buletinpsikologi/article/view/12679.

P. A. Cohen, A. Jhingran, A. Oaknin, and L. Denny, “Cervical cancer,” Lancet, vol. 393, no. 10167, pp. 169–182, 2019, doi: 10.1016/S0140-6736(18)32470-X.

C.-J. Chen et al., Epidemiology of Virus Infection and Human Cancer BT - Viruses and Human Cancer: From Basic Science to Clinical Prevention. 2021.

S. Rio, E. Sri, and T. Suci, “Persepsi tentang Kanker Serviks dan Upaya Prevensinya pada Perempuan yang Memiliki Keluarga dengan Riwayat Kanker,” J. Kesehat. Reproduksi, vol. 4, no. 3, pp. 159–169, 2017, doi: 10.22146/jkr.36511.

D. Makassari, “Sebaran Kanker di Indonesia, Riset Kesehatan Dasar 2007,” Indones. J. Cancer, vol. 11, no. 29, pp. 1–8, 2017, [Online]. Available: https://media.neliti.com/media/publications/197251-ID-sebaran-kanker-di-indonesia-riset-keseha.pdf.

I. H. Witten, Data Mining (Fourth Edition). 2017.

A. Javed, B. S. Lee, and D. M. Rizzo, “A benchmark study on time series clustering,” arXiv, vol. 1, no. June, p. 100001, 2020, doi: 10.1016/j.mlwa.2020.100001.

N. Nidheesh, K. A. Abdul Nazeer, and P. M. Ameer, “An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data,” Comput. Biol. Med., vol. 91, pp. 213–221, 2017, doi: 10.1016/j.compbiomed.2017.10.014.

S. Kapil and M. Chawla, “Performance Evaluation of K-means Clustering Algorithm with Various Distance Metrics,” 1 st IEEE Int. Conf. Power Electron. Intell. Control Energy Syst., vol. 110, no. 11, pp. 12–16, 2016, doi: 10.5120/19360-0929.

D. P. P. Mesquita, J. P. P. Gomes, A. H. Souza Junior, and J. S. Nobre, “Euclidean distance estimation in incomplete datasets,” Neurocomputing, vol. 248, pp. 11–18, 2017, doi: 10.1016/j.neucom.2016.12.081.

M. Nishom, “Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square,” J. Inform. J. Pengemb. IT, vol. 4, no. 1, pp. 20–24, 2019, doi: 10.30591/jpit.v4i1.1253.

D. T. Larose and C. D. Larose, Data Mining and Predictive Analytics, Second. New Jersey: Wiley, 2015.

C. Yuan and H. Yang, “Research on K-Value Selection Method of K-Means Clustering Algorithm,” J, vol. 2, no. 2, pp. 226–235, 2019, doi: 10.3390/j2020016.

J. L. Suárez, S. García, and F. Herrera, “A tutorial on distance metric learning: Mathematical foundations, algorithms, experimental analysis, prospects and challenges,” Neurocomputing, vol. 425, pp. 300–322, 2021, doi: 10.1016/j.neucom.2020.08.017.

G. Florin, Data Mining Concepts,Models and Techniques. Berlin: Springer, 2011.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Clustering Kanker Serviks Berdasarkan Perbandingan Euclidean dan Manhattan Menggunakan Metode K-Means

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.