Penerapan Data Mining Menggunakan Task Market Basket Analysis Pada Transaksi Penjualan Barang di Ab Mart dengan Algoritma Apriori
DOI:
https://doi.org/10.30865/mib.v5i2.2934Keywords:
Data Mining, Market Basket Analysis, Apriori AlgorithmAbstract
Data Mining is the process of extracting information or something interesting from the data in the database so as to produce valuable information using techniques such as clustering, estimation, description, and others. Based on observations at AB Mart, there were 44 product items whose data was not revealed. This problem will be solved using data mining analysis. The purpose of this research is to apply market basket analysis to the sale of goods at AB Mart with the a priori algorithm. This research uses a clear structure of the framework, namely problem identification, literature study, data collection, calculation & analysis of association rules with a priori algorithm, forming association rules and making reports. The results of the sales transaction of AB Mart in August resulted in or generated relationships between shopping product items where the% purchase of Pepsodent was 115%, Frisian Flag 96%, Sugar 96%, Indomilk 93%, and Nasi Jempol 91%. The conclusion of this research is using Weka software with a priori algorithm which produces an association relationship between pepsodent goods and the number of transactions purchasedReferences
Aditya, F. Marisa, and Purnomo, “Penerapan Algoritma Apriori Terhadap Data Penjualan di Toko Gudang BM,†2016.
Alfiqra and A. Faiza Yogi, “Penerapan Market Basket Analysis Menggunakan Proses Kdd (Knowledge Discovery In Database) Sebagai Strategi Penjualan Produk Swalayan (Studi Kasus : Swalayan X) Alfiqra,†2018.
R. Halim and Alam Jusia, “Perancangan Market Basket Analysis Menggunakan Association Rule untuk Pendukung Keputusan Promosi pada Sistem Penjualan Sun Young Cel,†pp. 964–973, 2017.
N. . Hasibuan, “Implementasi Data Mining Untuk Pengaturan Layout,†pp. 6–11, 2017.
F. . Hermawati, Data Mining. CV.ANDI OFFEST, 2013.
Hemawati, “Analisis Market Basket Dengan Algoritma Apriori (Study Kasus Toko Alief),†pp. 13–17, 2018.
S. Kalmegh, “Analysis of WEKA Data Mining Algorithm REPTree , Simple Cart and RandomTree for Classification of Indian News,†pp. 438–446, 2015.
S. Kuswayati and D. Tjahyadi, “Market Basket Analysis Menggunakan Algoritma Apriori Untuk Penetapan Strategi Bundling Penjualan Barang,†pp. 1–18, 2015.
A. K. Prasidya and Fibriani, “Pembelian Menggunakan Data Mining Dengan Algoritma Apriori ( Studi Kasus : Minimarket Gun Bandungan , Jawa Tengah ),†vol. 15, pp. 173–184, 2017.
D. Nofriansyah, Konsep Data Mining VS Sistem Pendukung Keputusan. Yogyakarta: DEEPUBLISH, 2014.
Nurdin and D. Astika, “Penerapan Data Mining Untuk Menganalisis Penjualan Barang Dengan Pada Supermarket Sejahtera Lhokseumawe,†pp. 134–155, 2015.
L. . Prahartiwi, “Pencarian Frequent Itemset pada Analisis Keranjang Belanja Menggunakan Algoritma FP-Growth,†pp. 1–10, 2017.
H. Santoso, I. . Hariyadi, and Prayitno, “Data Mining Analisa Pola Pembelian Produk’, Teknik Informatika,†pp. 19–24, 2016.
S. . Shona Chay Bilqisth, “Analisis pola pembelian konsumen dengan algoritma apriori pada indomaret indraprasta semarang,†p. 207, 2015.
A. Thoriq Muhammad and B. Nurhadiyono, “Penerapan Data Mining Pada Data Transaksi Penjualan Untuk Mengatur Penempatan Barang,†2014.
M. . Tana, “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Oase Menggunakan Algoritma Apriori,†pp. 17–22, 2018.
N. Silalahi, “Penerapan Association Rule Dengan Algoritma Apriori Untuk,†pp. 114–123, 2016.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).