Penerapan Data Mining Menggunakan Task Market Basket Analysis Pada Transaksi Penjualan Barang di Ab Mart dengan Algoritma Apriori

Authors

  • Andreas Lewis Universitas Potensi Utama, Medan
  • Muhammad Zarlis Universitas Sumatera Utara, Medan
  • Zakarias Situmorang Universitas Katolik Santo Thomas Medan, Medan

DOI:

https://doi.org/10.30865/mib.v5i2.2934

Keywords:

Data Mining, Market Basket Analysis, Apriori Algorithm

Abstract

Data Mining is the process of extracting information or something interesting from the data in the database so as to produce valuable information using techniques such as clustering, estimation, description, and others. Based on observations at AB Mart, there were 44 product items whose data was not revealed. This problem will be solved using data mining analysis. The purpose of this research is to apply market basket analysis to the sale of goods at AB Mart with the a priori algorithm. This research uses a clear structure of the framework, namely problem identification, literature study, data collection, calculation & analysis of association rules with a priori algorithm, forming association rules and making reports. The results of the sales transaction of AB Mart in August resulted in or generated relationships between shopping product items where the% purchase of Pepsodent was 115%, Frisian Flag 96%, Sugar 96%, Indomilk 93%, and Nasi Jempol 91%. The conclusion of this research is using Weka software with a priori algorithm which produces an association relationship between pepsodent goods and the number of transactions purchased

References

Aditya, F. Marisa, and Purnomo, “Penerapan Algoritma Apriori Terhadap Data Penjualan di Toko Gudang BM,†2016.

Alfiqra and A. Faiza Yogi, “Penerapan Market Basket Analysis Menggunakan Proses Kdd (Knowledge Discovery In Database) Sebagai Strategi Penjualan Produk Swalayan (Studi Kasus : Swalayan X) Alfiqra,†2018.

R. Halim and Alam Jusia, “Perancangan Market Basket Analysis Menggunakan Association Rule untuk Pendukung Keputusan Promosi pada Sistem Penjualan Sun Young Cel,†pp. 964–973, 2017.

N. . Hasibuan, “Implementasi Data Mining Untuk Pengaturan Layout,†pp. 6–11, 2017.

F. . Hermawati, Data Mining. CV.ANDI OFFEST, 2013.

Hemawati, “Analisis Market Basket Dengan Algoritma Apriori (Study Kasus Toko Alief),†pp. 13–17, 2018.

S. Kalmegh, “Analysis of WEKA Data Mining Algorithm REPTree , Simple Cart and RandomTree for Classification of Indian News,†pp. 438–446, 2015.

S. Kuswayati and D. Tjahyadi, “Market Basket Analysis Menggunakan Algoritma Apriori Untuk Penetapan Strategi Bundling Penjualan Barang,†pp. 1–18, 2015.

A. K. Prasidya and Fibriani, “Pembelian Menggunakan Data Mining Dengan Algoritma Apriori ( Studi Kasus : Minimarket Gun Bandungan , Jawa Tengah ),†vol. 15, pp. 173–184, 2017.

D. Nofriansyah, Konsep Data Mining VS Sistem Pendukung Keputusan. Yogyakarta: DEEPUBLISH, 2014.

Nurdin and D. Astika, “Penerapan Data Mining Untuk Menganalisis Penjualan Barang Dengan Pada Supermarket Sejahtera Lhokseumawe,†pp. 134–155, 2015.

L. . Prahartiwi, “Pencarian Frequent Itemset pada Analisis Keranjang Belanja Menggunakan Algoritma FP-Growth,†pp. 1–10, 2017.

H. Santoso, I. . Hariyadi, and Prayitno, “Data Mining Analisa Pola Pembelian Produk’, Teknik Informatika,†pp. 19–24, 2016.

S. . Shona Chay Bilqisth, “Analisis pola pembelian konsumen dengan algoritma apriori pada indomaret indraprasta semarang,†p. 207, 2015.

A. Thoriq Muhammad and B. Nurhadiyono, “Penerapan Data Mining Pada Data Transaksi Penjualan Untuk Mengatur Penempatan Barang,†2014.

M. . Tana, “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Oase Menggunakan Algoritma Apriori,†pp. 17–22, 2018.

N. Silalahi, “Penerapan Association Rule Dengan Algoritma Apriori Untuk,†pp. 114–123, 2016.

Downloads

Published

2021-04-25

Issue

Section

Articles