Penerapan Algoritma C4.5 Dalam Memprediksi Ketersediaan Uang Pada Mesin ATM

 (*)Firman Syahputra Mail (Universitas Potensi Utama, Medan, Indonesia)
 Hartono Hartono (Universitas Potensi Utama, Medan, Indonesia)
 Rika Rosnelly (Universitas Potensi Utama, Medan, Indonesia)

(*) Corresponding Author

DOI: http://dx.doi.org/10.30865/mib.v5i2.2933

Abstract

This study aims to provide an evaluation of the availability of money in ATM machines using data mining. Data mining with the C4.5 algorithm is used to predict cash demand or total cash withdrawals at ATMs. To determine the need for ATM cash based on cash transaction data. It is hoped that this forecasting can help the monitoring department in making decisions about the money requirements that must be allocated to each ATM machine. The results of this study are expected to assist the ATM management unit in optimizing and monitoring the availability of money at an ATM machine for cash needs, so that it can provide optimal service to customers. Algortima C4.5 is an algorithm that is able to form a decision tree, where the decision tree will then generate new knowledge. The results of the test matched the data on the availability of money at the ATM machine. The results of implementing the C4.5 method on the availability of money at the ATM machine are seen from the travel time to the ATM location and also the remaining balance in the machine. The resulting decision tree model is to make the balance variable as the root, then the travel time as a branch at Level 1 with the variables fast, medium, long, and the bank becomes a branch at the last level (Level 2). Then the C4.5 algorithm was tested using the K-Fold Cross validation method with the value of fold = 10, it can be seen that the accuracy rate is 85%, the Precision value is 80% and the Recall value is 66.67%. While the AUC (Area Under Curve) value is 0.833, this shows that if the AUC value approaches the value 1, the accuracy level is getting better

Keywords


Data Mining; Clasification; C4.5 Algorithm; Prediction; Availability of Money

Full Text:

PDF


Article Metrics

Abstract view : 225 times
PDF - 55 times

References

R. N. Damaris, M. Sitanggang, and R. P. Simanjuntak, “Sistem Pengendalian Intern Atas Transaksi Penerimaan Dan Pengeluaran Kas Anjungan Tunai Mandiri (Atm) Pt Bank Central Asia, Tbk,” J. Ilm., vol. 18, no. 2, pp. 54–63, 2014.

N. N. Lintangsari, N. Hidayati, Y. Purnamasari, H. Carolina, and W. F. Ramadhan, “Analisis Pengaruh Instrumen Pembayaran Non-Tunai Terhadap Stabilitas Sistem Keuangan Di Indonesia,” J. Din. Ekon. Pembang., vol. 1, no. 1, p. 47, 2018, doi: 10.14710/jdep.1.1.47-62.

R. Hafsari and S. Mawlan, “Sistem Informasi Monitoring Pengisian Uang Pada Mesin ATM oleh PT . Advantage Palembang,” 2008.

M. Di and S. Amikom, “Perbandingan metode nearest neighbor dan algoritma c4.5 untuk menganalisis kemungkinan pengunduran diri calon mahasiswa di stmik amikom yogyakarta,” vol. 10, no. 1, 2009.

K. and S. A. Rajesh, “Analysis of SEER Dataset for Breast Cancer Diagnosis using C4.5 Classification Algorithm,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 1, no. 2, pp. 72–77, 2012, [Online]. Available: www.ijarcce.com.

S. Masripah, “Komparasi Algoritma Klasifikasi Data Mining untuk Evaluasi Pemberian Kredit,” Bina Insa. ICT J., vol. 3, no. 1, p. 234336, 2016.

W. Julianto, R. Yunitarini, and M. K. Sophan, “Algoritma C4.5 Untuk Penilaian Kinerja Karyawan,” Scan, vol. Vo. IX, no. No. 2, pp. 33–39, 2014.

I. W. Saputro and B. W. Sari, “Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa,” Creat. Inf. Technol. J., vol. 6, no. 1, p. 1, 2020, doi: 10.24076/citec.2019v6i1.178.

D. L. Arisandy, “Analisis Perbandingan Algoritma Naive Bayes dan Algoritma C4.5 untuk Klasifikasi Multi Data,” no. 1310651061, 2017.

I. dan A. Mutiara, “Penerapan K-Optimal Pada Algoritma Knn Untuk Prediksi Kelulusan Tepat Waktu Mahasiswa Program Studi Ilmu Komputer Fmipa Unlam Berdasarkan Ip Sampai Dengan Semester 4,” Klik - Kumpul. J. Ilmu Komput., vol. 2, no. 2, pp. 159–173, 2015.

I. A. M. SUPARTINI, I. K. G. SUKARSA, and I. G. A. M. SRINADI, “Analisis Diskriminan Pada Klasifikasi Desa Di Kabupaten Tabanan Menggunakan Metode K-Fold Cross Validation,” E-Jurnal Mat., vol. 6, no. 2, p. 106, 2017, doi: 10.24843/mtk.2017.v06.i02.p154.

P. Mochamad Rizki Ilham, “Implementasi Data Mining Menggunakan Algoritma C4.5 Untuk Prediksi Kepuasan Pelanggan Taksi Kosti,” Simplementasi Data Min. Menggunakan Algoritm. C4.5 Untuk Prediksi Kepuasan Pelangg. Tak. Kosti, vol. Vol. 4, No, no. 5, p. 11, 2016.

T. k and M. Wadhawa, “Analysis and Comparison Study of Data Mining Algorithms Using Rapid Miner,” Int. J. Comput. Sci. Eng. Appl., vol. 6, no. 1, pp. 9–21, 2016, doi: 10.5121/ijcsea.2016.6102.

A. Lestari, “Increasing Accuracy of C4 . 5 Algorithm Using Information Gain Ratio and Adaboost for Classification of Chronic Kidney Disease,” pp. 32–38, 2020.

F. Harahap, “Penerapan data Mining dalam Pemilihan Mobil Menggunakan Algoritma C4.5,” J. VOI (Voice Informatics), vol. 7, no. x, 2018.

H. Azis, P. Purnawansyah, F. Fattah, and I. P. Putri, “Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung,” Ilk. J. Ilm., vol. 12, no. 2, pp. 81–86, 2020, doi: 10.33096/ilkom.v12i2.507.81-86.

F. Tempola, M. Muhammad, and A. Khairan, “Perbandingan Klasifikasi Antara KNN dan Naive Bayes pada Penentuan Status Gunung Berapi dengan K-Fold Cross Validation,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, p. 577, 2018, doi: 10.25126/jtiik.201855983.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma C4.5 Dalam Memprediksi Ketersediaan Uang Pada Mesin ATM

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.