Penerapan Algoritma C4.5 Dalam Memprediksi Ketersediaan Uang Pada Mesin ATM
DOI:
https://doi.org/10.30865/mib.v5i2.2933Keywords:
Data Mining, Clasification, C4.5 Algorithm, Prediction, Availability of MoneyAbstract
This study aims to provide an evaluation of the availability of money in ATM machines using data mining. Data mining with the C4.5 algorithm is used to predict cash demand or total cash withdrawals at ATMs. To determine the need for ATM cash based on cash transaction data. It is hoped that this forecasting can help the monitoring department in making decisions about the money requirements that must be allocated to each ATM machine. The results of this study are expected to assist the ATM management unit in optimizing and monitoring the availability of money at an ATM machine for cash needs, so that it can provide optimal service to customers. Algortima C4.5 is an algorithm that is able to form a decision tree, where the decision tree will then generate new knowledge. The results of the test matched the data on the availability of money at the ATM machine. The results of implementing the C4.5 method on the availability of money at the ATM machine are seen from the travel time to the ATM location and also the remaining balance in the machine. The resulting decision tree model is to make the balance variable as the root, then the travel time as a branch at Level 1 with the variables fast, medium, long, and the bank becomes a branch at the last level (Level 2). Then the C4.5 algorithm was tested using the K-Fold Cross validation method with the value of fold = 10, it can be seen that the accuracy rate is 85%, the Precision value is 80% and the Recall value is 66.67%. While the AUC (Area Under Curve) value is 0.833, this shows that if the AUC value approaches the value 1, the accuracy level is getting betterReferences
R. N. Damaris, M. Sitanggang, and R. P. Simanjuntak, “Sistem Pengendalian Intern Atas Transaksi Penerimaan Dan Pengeluaran Kas Anjungan Tunai Mandiri (Atm) Pt Bank Central Asia, Tbk,†J. Ilm., vol. 18, no. 2, pp. 54–63, 2014.
N. N. Lintangsari, N. Hidayati, Y. Purnamasari, H. Carolina, and W. F. Ramadhan, “Analisis Pengaruh Instrumen Pembayaran Non-Tunai Terhadap Stabilitas Sistem Keuangan Di Indonesia,†J. Din. Ekon. Pembang., vol. 1, no. 1, p. 47, 2018, doi: 10.14710/jdep.1.1.47-62.
R. Hafsari and S. Mawlan, “Sistem Informasi Monitoring Pengisian Uang Pada Mesin ATM oleh PT . Advantage Palembang,†2008.
M. Di and S. Amikom, “Perbandingan metode nearest neighbor dan algoritma c4.5 untuk menganalisis kemungkinan pengunduran diri calon mahasiswa di stmik amikom yogyakarta,†vol. 10, no. 1, 2009.
K. and S. A. Rajesh, “Analysis of SEER Dataset for Breast Cancer Diagnosis using C4.5 Classification Algorithm,†Int. J. Adv. Res. Comput. Commun. Eng., vol. 1, no. 2, pp. 72–77, 2012, [Online]. Available: www.ijarcce.com.
S. Masripah, “Komparasi Algoritma Klasifikasi Data Mining untuk Evaluasi Pemberian Kredit,†Bina Insa. ICT J., vol. 3, no. 1, p. 234336, 2016.
W. Julianto, R. Yunitarini, and M. K. Sophan, “Algoritma C4.5 Untuk Penilaian Kinerja Karyawan,†Scan, vol. Vo. IX, no. No. 2, pp. 33–39, 2014.
I. W. Saputro and B. W. Sari, “Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa,†Creat. Inf. Technol. J., vol. 6, no. 1, p. 1, 2020, doi: 10.24076/citec.2019v6i1.178.
D. L. Arisandy, “Analisis Perbandingan Algoritma Naive Bayes dan Algoritma C4.5 untuk Klasifikasi Multi Data,†no. 1310651061, 2017.
I. dan A. Mutiara, “Penerapan K-Optimal Pada Algoritma Knn Untuk Prediksi Kelulusan Tepat Waktu Mahasiswa Program Studi Ilmu Komputer Fmipa Unlam Berdasarkan Ip Sampai Dengan Semester 4,†Klik - Kumpul. J. Ilmu Komput., vol. 2, no. 2, pp. 159–173, 2015.
I. A. M. SUPARTINI, I. K. G. SUKARSA, and I. G. A. M. SRINADI, “Analisis Diskriminan Pada Klasifikasi Desa Di Kabupaten Tabanan Menggunakan Metode K-Fold Cross Validation,†E-Jurnal Mat., vol. 6, no. 2, p. 106, 2017, doi: 10.24843/mtk.2017.v06.i02.p154.
P. Mochamad Rizki Ilham, “Implementasi Data Mining Menggunakan Algoritma C4.5 Untuk Prediksi Kepuasan Pelanggan Taksi Kosti,†Simplementasi Data Min. Menggunakan Algoritm. C4.5 Untuk Prediksi Kepuasan Pelangg. Tak. Kosti, vol. Vol. 4, No, no. 5, p. 11, 2016.
T. k and M. Wadhawa, “Analysis and Comparison Study of Data Mining Algorithms Using Rapid Miner,†Int. J. Comput. Sci. Eng. Appl., vol. 6, no. 1, pp. 9–21, 2016, doi: 10.5121/ijcsea.2016.6102.
A. Lestari, “Increasing Accuracy of C4 . 5 Algorithm Using Information Gain Ratio and Adaboost for Classification of Chronic Kidney Disease,†pp. 32–38, 2020.
F. Harahap, “Penerapan data Mining dalam Pemilihan Mobil Menggunakan Algoritma C4.5,†J. VOI (Voice Informatics), vol. 7, no. x, 2018.
H. Azis, P. Purnawansyah, F. Fattah, and I. P. Putri, “Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung,†Ilk. J. Ilm., vol. 12, no. 2, pp. 81–86, 2020, doi: 10.33096/ilkom.v12i2.507.81-86.
F. Tempola, M. Muhammad, and A. Khairan, “Perbandingan Klasifikasi Antara KNN dan Naive Bayes pada Penentuan Status Gunung Berapi dengan K-Fold Cross Validation,†J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, p. 577, 2018, doi: 10.25126/jtiik.201855983.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).