Autoregressive Integrated Moving Average (ARIMA-Box Jenkins) Pada Peramalan Komoditas Cabai Merah di Indonesia
DOI:
https://doi.org/10.30865/mib.v5i2.2927Keywords:
ARIMA, Time Series, Chili, Minitab 19Abstract
Chili is one of the main staples in making a dish and chili is one of the values in a commodity that has superior value, the price of chili often experiences price fluctuations or what is known as the price which is always changing. data taken from BPS (Central Bureau of Statistics) data nationally from January 2001 to December 2015 data, this study also aims to be able to predict national chili prices which will later be used in research, namely discussing the Autoregressive Integrated Moving Average (ARIMA) method. In this study, the identification of the model was carried out using two tests, namely the stationarity test and the correlation test. The stationarity test is the Augmented Dickey-Fuller (ADF) test, the Philips-Perron (PP) test and the Kwiatkowski-Philips-Schmidt-Shin (KPPS) test using Minitab 9.The chili commodity is a very important commodity in the Indonesian economy, because In terms of consumption, chilies have a very significant market share, which can be seen from data from the Central Statistics Agency (BPS) with an inflation weight value of 0.35%. From the research, it was found that for the selection of the best method, namely ARIMA (3,1,0) because it has the smallest MSE value and the forecasting results for the next 12 periods in January 2016 ranged from Rp. 11,868.2 to Rp. 28,315.5 and so on until December 2016.References
P. Jumlah and P. Pantai, “Kenjeran Surabaya Menggunakan Arima Box-Jenkins,†2017.
S. Santosa and R. Anggi Pramunendar, “Prediksi Harga Kedelai Lokal Dan Kedelai Impor Dengan Metode Support Vector Machine Berbasis Forward Selection,†J. Teknol. Inf., vol. 15, no. 1, pp. 61–76, 2019, [Online]. Available: http://research.
F. Nur Hadiansyah, “Prediksi Harga Cabai dengan Menggunakan pemodelan Time Series ARIMA,†Indones. J. Comput., vol. 2, no. 1, p. 71, 2017, doi: 10.21108/indojc.2017.2.1.144.
A. Method, S. E. Smoothing, and L. T. Erlangga, “Peramalan Harga Cabai Rawit Merah di Jakarta Pusat Mengunakan Metode Moving Average dan Single Exponential Smoothing,†vol. 1, no. 2016, pp. 2016–2019, 2018.
S. Aziz, A. Sayuti, and Mustakim, “Penerapan Metode ARIMA untuk Peramalan Pengunjung Perpustakaan UIN Suska Riau Syarfi,†Semin. Nas. Teknol. Informasi, Komun. dan Ind., vol. 9, no. January, pp. 186–193, 2017.
A. R. Nisa, T. Tarno, and A. Rusgiyono, “Peramalan Harga Cabai Merah Menggunakan Model Variasi Kalender Regarima Dengan Moving Holiday Effect (Studi Kasus: Harga Cabai Merah Periode Januari 2012 Sampai Dengan Desember 2019 Di Provinsi Jawa Barat),†J. Gaussian, vol. 9, no. 2, pp. 170–181, 2020, doi: 10.14710/j.gauss.v9i2.27819.
I. Milasari, “Peramalan Jumlah Penderita Demam Berdarah Menggunakan Model ARIMA Musiman,†Tugas Akhir Mhs. Univ. Islam Negeri Malang, 2008.
L. Hanum, “Studi Perbandingan Metode ARIMA ( Box- -Jenkins ) dan Metode Backpropagation dalam Memprediksi Indeks Harga Saham Gabungan,†2017.
D. Monika, A. Ahmad, S. Wardani, and Solikhun, “Model Jaringan Syaraf Tiruan Dalam Memprediksi Ketersediaan Cabai Berdasarkan Provinsi,†Teknika, vol. 8, no. 1, pp. 17–24, 2019, doi: 10.34148/teknika.v8i1.140.
Nabilah, “Peramalan Harga Dan Produksi Cabai Rawit Di Provinsi Jawa Timur,†p. 90, 2017, [Online]. Available: http://repository.its.ac.id/41816/.
J. Wiley, “þÿARMA Models and the Box Jenkins Methodology,†1997.
L. Gee, S. Makridakis, and S. C. Wheelwright, “Interactive Forecasting -- Univariate and Multivariate Methods,†J. Oper. Res. Soc., vol. 30, no. 5, p. 501, 1979, doi: 10.2307/3009734.
R. H. Br Bangun, “Penerapan Autoregressive Integrated Moving Average (Arima) Pada Peramalan Produksi Kedelai Di Sumatera Utara,†J. Agrica, vol. 9, no. 2, p. 90, 2017, doi: 10.31289/agrica.v9i2.484.
T. Nyoni, “Munich Personal RePEc Archive Box-Jenkins ARIMA approach to predicting net FDI inflows in Zimbabwe BOX-JENKINS ARIMA APPROACH TO PREDICTING NET FDI INFLOWS IN ZIMBABWE,†no. 87737, 2018, [Online]. Available: https://mpra.ub.uni-muenchen.de/id/eprint/87737.
S. Rohmah, “Implementasi Metode Autoregressive Integrated Moving Average ( Arima ) Dalam Peramalan Jangka Pendek ( Short Term Forecasting ) Terhadap Jumlah Implementasi Metode Autoregressive Integrated Moving Average ( Arima ) Dalam Peramalan Jangka Pendek ( Short Te,†Skripsi, 2018, [Online]. Available: http://repository.its.ac.id/50150/1/04211340000020-Undergraduate_Theses.pdf.
C. C. Aditya, “Peramalan Curah Hujan Di Pos Hujan Ledok Nongko Kecamatan Turi, Daerah Istimewa Yogyakarta Dengan Metode Autorgressive Integrated Moving Average (ARIMA) Box-Jenkins Menggunakan Software Eviews 10,†Skripsi Yogyakarta Univ. Sanatha Dharma, p. Universitas Sanatha, 2019.
Nurulita, Penerapan Metode Peramalan Arima (Autoregressive Integrated Moving Average) Untuk Penentuan Tingkat Safety Stock Pada Industri Elektronik. 2012.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).