Autoregressive Integrated Moving Average (ARIMA-Box Jenkins) Pada Peramalan Komoditas Cabai Merah di Indonesia

 (*)Ridha Maya Faza Lubis Mail (Universitas Potensi Utama, Medan, Indonesia)
 Zakarias Situmorang (Universitas Katolik Santo Thomas, Medan, Indonesia)
 Rika Rosnelly (Universitas Potensi Utama, Medan, Indonesia)

(*) Corresponding Author

DOI: http://dx.doi.org/10.30865/mib.v5i2.2927

Abstract

Chili is one of the main staples in making a dish and chili is one of the values in a commodity that has superior value, the price of chili often experiences price fluctuations or what is known as the price which is always changing. data taken from BPS (Central Bureau of Statistics) data nationally from January 2001 to December 2015 data, this study also aims to be able to predict national chili prices which will later be used in research, namely discussing the Autoregressive Integrated Moving Average (ARIMA) method. In this study, the identification of the model was carried out using two tests, namely the stationarity test and the correlation test. The stationarity test is the Augmented Dickey-Fuller (ADF) test, the Philips-Perron (PP) test and the Kwiatkowski-Philips-Schmidt-Shin (KPPS) test using Minitab 9.The chili commodity is a very important commodity in the Indonesian economy, because In terms of consumption, chilies have a very significant market share, which can be seen from data from the Central Statistics Agency (BPS) with an inflation weight value of 0.35%. From the research, it was found that for the selection of the best method, namely ARIMA (3,1,0) because it has the smallest MSE value and the forecasting results for the next 12 periods in January 2016 ranged from Rp. 11,868.2 to Rp. 28,315.5 and so on until December 2016.

Keywords


ARIMA; Time Series; Chili; Minitab 19

Full Text:

PDF


Article Metrics

Abstract view : 251 times
PDF - 70 times

References

P. Jumlah and P. Pantai, “Kenjeran Surabaya Menggunakan Arima Box-Jenkins,” 2017.

S. Santosa and R. Anggi Pramunendar, “Prediksi Harga Kedelai Lokal Dan Kedelai Impor Dengan Metode Support Vector Machine Berbasis Forward Selection,” J. Teknol. Inf., vol. 15, no. 1, pp. 61–76, 2019, [Online]. Available: http://research.

F. Nur Hadiansyah, “Prediksi Harga Cabai dengan Menggunakan pemodelan Time Series ARIMA,” Indones. J. Comput., vol. 2, no. 1, p. 71, 2017, doi: 10.21108/indojc.2017.2.1.144.

A. Method, S. E. Smoothing, and L. T. Erlangga, “Peramalan Harga Cabai Rawit Merah di Jakarta Pusat Mengunakan Metode Moving Average dan Single Exponential Smoothing,” vol. 1, no. 2016, pp. 2016–2019, 2018.

S. Aziz, A. Sayuti, and Mustakim, “Penerapan Metode ARIMA untuk Peramalan Pengunjung Perpustakaan UIN Suska Riau Syarfi,” Semin. Nas. Teknol. Informasi, Komun. dan Ind., vol. 9, no. January, pp. 186–193, 2017.

A. R. Nisa, T. Tarno, and A. Rusgiyono, “Peramalan Harga Cabai Merah Menggunakan Model Variasi Kalender Regarima Dengan Moving Holiday Effect (Studi Kasus: Harga Cabai Merah Periode Januari 2012 Sampai Dengan Desember 2019 Di Provinsi Jawa Barat),” J. Gaussian, vol. 9, no. 2, pp. 170–181, 2020, doi: 10.14710/j.gauss.v9i2.27819.

I. Milasari, “Peramalan Jumlah Penderita Demam Berdarah Menggunakan Model ARIMA Musiman,” Tugas Akhir Mhs. Univ. Islam Negeri Malang, 2008.

L. Hanum, “Studi Perbandingan Metode ARIMA ( Box- -Jenkins ) dan Metode Backpropagation dalam Memprediksi Indeks Harga Saham Gabungan,” 2017.

D. Monika, A. Ahmad, S. Wardani, and Solikhun, “Model Jaringan Syaraf Tiruan Dalam Memprediksi Ketersediaan Cabai Berdasarkan Provinsi,” Teknika, vol. 8, no. 1, pp. 17–24, 2019, doi: 10.34148/teknika.v8i1.140.

Nabilah, “Peramalan Harga Dan Produksi Cabai Rawit Di Provinsi Jawa Timur,” p. 90, 2017, [Online]. Available: http://repository.its.ac.id/41816/.

J. Wiley, “þÿARMA Models and the Box Jenkins Methodology,” 1997.

L. Gee, S. Makridakis, and S. C. Wheelwright, “Interactive Forecasting -- Univariate and Multivariate Methods,” J. Oper. Res. Soc., vol. 30, no. 5, p. 501, 1979, doi: 10.2307/3009734.

R. H. Br Bangun, “Penerapan Autoregressive Integrated Moving Average (Arima) Pada Peramalan Produksi Kedelai Di Sumatera Utara,” J. Agrica, vol. 9, no. 2, p. 90, 2017, doi: 10.31289/agrica.v9i2.484.

T. Nyoni, “Munich Personal RePEc Archive Box-Jenkins ARIMA approach to predicting net FDI inflows in Zimbabwe BOX-JENKINS ARIMA APPROACH TO PREDICTING NET FDI INFLOWS IN ZIMBABWE,” no. 87737, 2018, [Online]. Available: https://mpra.ub.uni-muenchen.de/id/eprint/87737.

S. Rohmah, “Implementasi Metode Autoregressive Integrated Moving Average ( Arima ) Dalam Peramalan Jangka Pendek ( Short Term Forecasting ) Terhadap Jumlah Implementasi Metode Autoregressive Integrated Moving Average ( Arima ) Dalam Peramalan Jangka Pendek ( Short Te,” Skripsi, 2018, [Online]. Available: http://repository.its.ac.id/50150/1/04211340000020-Undergraduate_Theses.pdf.

C. C. Aditya, “Peramalan Curah Hujan Di Pos Hujan Ledok Nongko Kecamatan Turi, Daerah Istimewa Yogyakarta Dengan Metode Autorgressive Integrated Moving Average (ARIMA) Box-Jenkins Menggunakan Software Eviews 10,” Skripsi Yogyakarta Univ. Sanatha Dharma, p. Universitas Sanatha, 2019.

Nurulita, Penerapan Metode Peramalan Arima (Autoregressive Integrated Moving Average) Untuk Penentuan Tingkat Safety Stock Pada Industri Elektronik. 2012.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Autoregressive Integrated Moving Average (ARIMA-Box Jenkins) Pada Peramalan Komoditas Cabai Merah di Indonesia

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.