Analisis Komparasi Algoritma Naïve Bayes dan K-Nearest Neighbor Untuk Memprediksi Kelulusan Mahasiswa Tepat Waktu

Muhammad Gunawan, Muhammad Zarlis, Roslina Roslina

Abstract


Students are one of the important pillars in the life cycle of a university. In the process of developing, a university can be influenced by how many bachelor degree (S1) graduates from the university are. The number of graduations of a college sometimes has a low ratio when compared to the number of students admitted in the same school year. This low passing rate of students can be caused by several factors, such as the number of student activities that are participated in, economic factors, and several other unexpected factors. This makes a university must have a scheme or a formula that can predict whether the student can graduate on time. Normally, a bachelor (S1) student takes 8 semesters of education. But the existence of several factors that have been mentioned can make the time to take S1 education to be more, or even fail to graduate. This study will try to compare the results of the analysis of the two methods in the classification algorithm to predict student graduation. The algorithm used is the K-Nearest Neighbor and Naïve Bayes Algorithm. This study also aims to identify the best algorithm among the two classification algorithm choices. This research concluded that the Naïve Bayes algorithm has the same level of accuracy as the KNN algorithm in predicting the graduation of students in the Medical Education study program, which is 90%

Keywords


Naïve Bayes; K-Nearest Neighbor; Student Graduation; Prediction; Algorithm Comparison

Full Text:

PDF

References


E. Yulianti and Y. A. Nurdin, “SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BANTUAN SISWA MISKIN (BSM) BERBASIS ONLINE DENGAN METODE KNN (K-NEAREST NEIGHBOR) (Studi kasus : SMPN 1 Koto XI Tarusan),†TEKNOIF, vol. 6, no. 1, pp. 12–17, 2018.

N. L. G. P. Suwirmayanti, “Penerapan Metode K-Nearest Neighbor Untuk Sistem Rekomendasi Pemilihan Mobil,†Techno, vol. 16, no. 2, pp. 120–131, 2017.

R. N. Devita, H. W. Herwanto, and A. Wibawa Prasetya, “PERBANDINGAN KINERJA METODE NAIVE BAYES DAN K-NEAREST NEIGHBOR UNTUK KLASIFIKASI ARTIKEL BERBAHASA INDONESIA,†JTIIK, vol. 5, no. 4, pp. 427–434, 2018.

R. Nuari, A. Apriliyani, Juwari, and Kusrini, “IMPLEMENTASI METODE K-NEAREST NEIGHBOR (KNN) UNTUK MEMPREDIKSI VARIETAS PADI YANG COCOK UNTUK LAHAN PERTANIAN,†INFORMA, vol. 4, no. 2, pp. 2–8, 2018.

M. Guntur, J. Santony, and Yuhandri, “Prediksi Harga Emas dengan Menggunakan Metode Naïve Bayes dalam Investasi untuk Meminimalisasi Resiko,†RESTI, vol. 2, no. 1, pp. 354–360, 2018.

C. Fadlan, S. Ningsih, and A. P. Windarto, “PENERAPAN METODE NAÃVE BAYES DALAM KLASIFIKASI KELAYAKAN KELUARGA PENERIMA BERAS RASTRA,†JUTIM, vol. 3, no. 1, pp. 1–8, 2018.

H. Annur, “KLASIFIKASI MASYARAKAT MISKIN MENGGUNAKAN METODE NAÃVE BAYES,†Ilk. J. Ilm., vol. 10, no. 2, pp. 160–165, 2018.

R. Ardianto, T. Rivanie, Y. Alkhalifi, F. S. Nugraha, and W. Gata, “SENTIMENT ANALYSIS ON E-SPORTS FOR EDUCATION CURRICULUM USING NAIVE BAYES AND SUPPORT VECTOR MACHINE,†J. Ilmu Komput. dan Inf., vol. 13, no. 2, 2020.

R. W. Pratiwi and Y. S. Nugroho, “Prediksi Rating Film Menggunakan Metode Naïve Bayes,†Tek. Elektro, vol. 8, no. 2, pp. 60–63, 2016.

Y. I. Kurniawan, “PERBANDINGAN ALGORITMA NAIVE BAYES DAN C.45 DALAM KLASIFIKASI DATA MINING,†JTIIK, vol. 5, no. 4, pp. 455–464, 2018.

V. Vangara and S. P. Vangara, “Opinion Mining Classification using Naive Bayes Algorithm,†IJITEE, vol. 9, no. 5, 2020.

D. Nofriansyah, K. Erwansyah, and M. Ramadhan, “Penerapan Data Mining dengan Algoritma Naive Bayes Clasifier untuk Mengetahui Minat Beli Pelanggan terhadap Kartu Internet XL (Studi Kasus di CV. Sumber Utama Telekomunikasi),†SAINTIKOM, vol. 15, no. 2, pp. 81–92, 2016.

E. Sutoyo and A. Almaarif, “Educational Data Mining untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritme Naïve Bayes Classifier,†J. RESTI, vol. 1, no. 10, pp. 95–101, 2021.

A. P. Giovani, Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI,†J. TEKNOINFO, vol. 14, no. 2, pp. 116–124, 2020.

H. Saadatfar, S. Khosravi, J. H. Joloudari, A. Mosavi, and S. Shamshirband, “A New K-Nearest Neighbors Classifier for Big Data Based on E ffi cient Data Pruning,†Mathematics, vol. 8, no. 286, pp. 1–12, 2020.

L. Farokhah, “IMPLEMENTASI K-NEAREST NEIGHBOR UNTUK KLASIFIKASI BUNGA IMPLEMENTATION OF K-NEAREST NEIGHBOR FOR FLOWER CLASSIFICATION WITH EXTRACTION OF RGB COLOR FEATURES,†JTIIK, vol. 7, no. 6, pp. 1129–1136, 2020.

Muhathir, T. T. S. Sibarani, and Al-Khowarizmi, “Analysis K-Nearest Neighbors ( KNN ) in Identifying Tuberculosis Disease ( Tb ) By Utilizing Hog Feature Extraction,†AIoCSIT, vol. 1, no. 1, pp. 33–38, 2020.




DOI: https://doi.org/10.30865/mib.v5i2.2925

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.