Analisis Kinerja Support Vector Machine dalam Mengidentifikasi Komentar Perundungan pada Jejaring Sosial

 (*)Ade Clinton Sitepu Mail (Universitas Potensi Utama, Medan, Indonesia)
 Wanayumini Wanayumini (Universitas Potensi Utama, Medan, Indonesia)
 Zakarias Situmorang (Universitas Katolik Santo Thomas Medan, Medan, Indonesia)

(*) Corresponding Author

DOI: http://dx.doi.org/10.30865/mib.v5i2.2923

Abstract

Cyberbullying is the same as bullying but it is done through media technology. Bullying has often occurred along with the development of social media technology in society. Some technique are needed to filter out bully comments because it will indirectly affect the psychological condition of the reader, morover it is aimed at the person concerned. By using data mining techniques, the system is expected to be able to classify information circulating in the community. This research uses the Support Vector Machine (SVM) classification because the algorithm is good at performing the classification process. Research using about 1000 dataset comments. Data are grouped manually first into the labels "bully" and "not bully" then the data divide into training data and test data. To test the system capability, data is analyzed using confusion matrix. The results showed that the SVM Algorithm was able to classify with an level of accuracy 87.75%, 89% precision and 91% Recal. The SVM algorithm is able to formulate training data with level of accuracy 98.3%

Keywords


Cyberbullying; Sentiment Analyisis; Google Colab Phyton; Support Vector Machine (SVM); Confusion Matrix

Full Text:

PDF


Article Metrics

Abstract view : 238 times
PDF - 77 times

References

J. Hutahaean, Konsep sistem informasi. Deepublish, 2015.

J. V Mokalu, N. N. Mewengkang, and J. P. M. Tangkudung, “Dampak Teknologi Smartphone Terhadap Perilaku Orang Tua Di Desa Touure Kecamatan Tompaso,” ACTA DIURNA Komun., vol. 5, no. 1, 2016.

S. Surahman, “Publik Figur Sebagai Virtual Opinion Leader dan Kepercayaan Informasi Masyarakat,” J. Wacana, vol. 17, no. 1, pp. 53–63, 2018.

E. D. S. Watie, “Komunikasi dan media sosial (communications and social media),” J. Messenger, vol. 3, no. 2, pp. 69–74, 2016.

A. S. Cahyono, “Pengaruh media sosial terhadap perubahan sosial masyarakat di Indonesia,” J. Publiciana, vol. 9, no. 1, pp. 140–157, 2016.

A. A. SYAM, “Tinjauan Kriminologis Terhadap Kejahatan Cyberbullying.” 2015.

K. Sussolaikah and A. Alwi, “Sentiment Analysis Terhadap Acara Televisi Mata Najwa Berdasarkan Opini Masyarakat Pada Microblogging Twitter,” no. November. Universitas Muhammdiyah ponorogo, 2016.

N. M. Norwawi, “Recognition decision-making model using temporal data mining technique,” J. Inf. Commun. Technol., vol. 4, pp. 37–56, 2020.

X. Wu and V. Kumar, The top ten algorithms in data mining. CRC press, 2009.

S. K. Lidya, O. S. Sitompul, and S. Efendi, “Sentiment Analysis Pada Teks Bahasa Indonesia Menggunakan Support Vector Machine (SVM) Dan K-Nearest Neighbor (K-NN),” 2015.

A. C. Sitepu, W. Wanayumini, and Z. Situmorang, “Comparative of ID3 and Naive Bayes in Predictid Indicators of House Worthiness,” J. Ipteks Terap., vol. 14, no. 3, pp. 212–218, 2020.

A. Rahman, W. Wiranto, and A. Doewes, “Online news classification using multinomial naive bayes,” ITSMART J. Teknol. dan Inf., vol. 6, no. 1, pp. 32–38, 2017.

N. D. Putranti and E. Winarko, “Analisis sentimen twitter untuk teks berbahasa Indonesia dengan maximum entropy dan support vector machine,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 8, no. 1, pp. 91–100, 2014.

N. Saputra, T. B. Adji, and A. E. Permanasari, “Analisis sentimen data presiden Jokowi dengan preprocessing normalisasi dan stemming menggunakan metode naive bayes dan SVM,” J. Din. Inform., vol. 5, no. 1, 2015.

A. T. J. Harjanta, “Preprocessing Text untuk Meminimalisir Kata yang Tidak Berarti dalam Proses Text Mining,” J. Inform. Upgris, vol. 1, no. 1 Juni, 2015.

A. Sabrani and F. Bimantoro, “Multinomial Naïve Bayes untuk Klasifikasi Artikel Online tentang Gempa di Indonesia,” J. Teknol. Informasi, Komputer, dan Apl., vol. 2, no. 1, pp. 89–100, 2020.

N. Zeng, H. Qiu, Z. Wang, W. Liu, H. Zhang, and Y. Li, “A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease,” Neurocomputing, vol. 320, pp. 195–202, 2018.

O. H. Rahman, G. Abdillah, and A. Komarudin, “Klasifikasi Ujaran Kebencian pada Media Sosial Twitter Menggunakan Support Vector Machine,” J. RESTI (Rekayasa Sist. Dan Teknol. Informasi), vol. 5, no. 1, pp. 17–23, 2021.

A. K. B. A. Putra, M. A. Fauzi, B. D. Setiawan, and E. Setiawati, “Identifikasi Ujaran Kebencian Pada Facebook Dengan Metode Ensemble Feature Dan Support Vector Machine,” J. Pengemb. Teknol. Informasį dan Ilmu Komput. e-ISSN, vol. 2548, p. 964X, 2018.

A. P. Putra, N. N. Debataraja, and D. Kusnandar, “TINGKAT AKURASI KLASIFIKASI JARAK KELAHIRAN DI KAMPUNG KELUARGA BERENCANA (KB) DENGAN METODE SUPPORT VECTOR MACHINE (SVM),” BIMASTER, vol. 9, no. 3.

S. Ruuska, W. Hämäläinen, S. Kajava, M. Mughal, P. Matilainen, and J. Mononen, “Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle,” Behav. Processes, vol. 148, pp. 56–62, 2018.

S. S. Salim and J. Mayary, “Analisis Sentimen Pengguna Twitter Terhadap Dompet Elektronik Dengan Metode Lexicon Based Dan K–Nearest Neighbor,” J. Ilm. Inform. Komput., vol. 25, no. 1, pp. 1–17, 2020.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Kinerja Support Vector Machine dalam Mengidentifikasi Komentar Perundungan pada Jejaring Sosial

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.