Analisis Kinerja Support Vector Machine dalam Mengidentifikasi Komentar Perundungan pada Jejaring Sosial
DOI:
https://doi.org/10.30865/mib.v5i2.2923Keywords:
Cyberbullying, Sentiment Analyisis, Google Colab Phyton, Support Vector Machine (SVM), Confusion MatrixAbstract
Cyberbullying is the same as bullying but it is done through media technology. Bullying has often occurred along with the development of social media technology in society. Some technique are needed to filter out bully comments because it will indirectly affect the psychological condition of the reader, morover it is aimed at the person concerned. By using data mining techniques, the system is expected to be able to classify information circulating in the community. This research uses the Support Vector Machine (SVM) classification because the algorithm is good at performing the classification process. Research using about 1000 dataset comments. Data are grouped manually first into the labels "bully" and "not bully" then the data divide into training data and test data. To test the system capability, data is analyzed using confusion matrix. The results showed that the SVM Algorithm was able to classify with an level of accuracy 87.75%, 89% precision and 91% Recal. The SVM algorithm is able to formulate training data with level of accuracy 98.3%References
J. Hutahaean, Konsep sistem informasi. Deepublish, 2015.
J. V Mokalu, N. N. Mewengkang, and J. P. M. Tangkudung, “Dampak Teknologi Smartphone Terhadap Perilaku Orang Tua Di Desa Touure Kecamatan Tompaso,†ACTA DIURNA Komun., vol. 5, no. 1, 2016.
S. Surahman, “Publik Figur Sebagai Virtual Opinion Leader dan Kepercayaan Informasi Masyarakat,†J. Wacana, vol. 17, no. 1, pp. 53–63, 2018.
E. D. S. Watie, “Komunikasi dan media sosial (communications and social media),†J. Messenger, vol. 3, no. 2, pp. 69–74, 2016.
A. S. Cahyono, “Pengaruh media sosial terhadap perubahan sosial masyarakat di Indonesia,†J. Publiciana, vol. 9, no. 1, pp. 140–157, 2016.
A. A. SYAM, “Tinjauan Kriminologis Terhadap Kejahatan Cyberbullying.†2015.
K. Sussolaikah and A. Alwi, “Sentiment Analysis Terhadap Acara Televisi Mata Najwa Berdasarkan Opini Masyarakat Pada Microblogging Twitter,†no. November. Universitas Muhammdiyah ponorogo, 2016.
N. M. Norwawi, “Recognition decision-making model using temporal data mining technique,†J. Inf. Commun. Technol., vol. 4, pp. 37–56, 2020.
X. Wu and V. Kumar, The top ten algorithms in data mining. CRC press, 2009.
S. K. Lidya, O. S. Sitompul, and S. Efendi, “Sentiment Analysis Pada Teks Bahasa Indonesia Menggunakan Support Vector Machine (SVM) Dan K-Nearest Neighbor (K-NN),†2015.
A. C. Sitepu, W. Wanayumini, and Z. Situmorang, “Comparative of ID3 and Naive Bayes in Predictid Indicators of House Worthiness,†J. Ipteks Terap., vol. 14, no. 3, pp. 212–218, 2020.
A. Rahman, W. Wiranto, and A. Doewes, “Online news classification using multinomial naive bayes,†ITSMART J. Teknol. dan Inf., vol. 6, no. 1, pp. 32–38, 2017.
N. D. Putranti and E. Winarko, “Analisis sentimen twitter untuk teks berbahasa Indonesia dengan maximum entropy dan support vector machine,†IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 8, no. 1, pp. 91–100, 2014.
N. Saputra, T. B. Adji, and A. E. Permanasari, “Analisis sentimen data presiden Jokowi dengan preprocessing normalisasi dan stemming menggunakan metode naive bayes dan SVM,†J. Din. Inform., vol. 5, no. 1, 2015.
A. T. J. Harjanta, “Preprocessing Text untuk Meminimalisir Kata yang Tidak Berarti dalam Proses Text Mining,†J. Inform. Upgris, vol. 1, no. 1 Juni, 2015.
A. Sabrani and F. Bimantoro, “Multinomial Naïve Bayes untuk Klasifikasi Artikel Online tentang Gempa di Indonesia,†J. Teknol. Informasi, Komputer, dan Apl., vol. 2, no. 1, pp. 89–100, 2020.
N. Zeng, H. Qiu, Z. Wang, W. Liu, H. Zhang, and Y. Li, “A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease,†Neurocomputing, vol. 320, pp. 195–202, 2018.
O. H. Rahman, G. Abdillah, and A. Komarudin, “Klasifikasi Ujaran Kebencian pada Media Sosial Twitter Menggunakan Support Vector Machine,†J. RESTI (Rekayasa Sist. Dan Teknol. Informasi), vol. 5, no. 1, pp. 17–23, 2021.
A. K. B. A. Putra, M. A. Fauzi, B. D. Setiawan, and E. Setiawati, “Identifikasi Ujaran Kebencian Pada Facebook Dengan Metode Ensemble Feature Dan Support Vector Machine,†J. Pengemb. Teknol. Informasį dan Ilmu Komput. e-ISSN, vol. 2548, p. 964X, 2018.
A. P. Putra, N. N. Debataraja, and D. Kusnandar, “TINGKAT AKURASI KLASIFIKASI JARAK KELAHIRAN DI KAMPUNG KELUARGA BERENCANA (KB) DENGAN METODE SUPPORT VECTOR MACHINE (SVM),†BIMASTER, vol. 9, no. 3.
S. Ruuska, W. Hämäläinen, S. Kajava, M. Mughal, P. Matilainen, and J. Mononen, “Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle,†Behav. Processes, vol. 148, pp. 56–62, 2018.
S. S. Salim and J. Mayary, “Analisis Sentimen Pengguna Twitter Terhadap Dompet Elektronik Dengan Metode Lexicon Based Dan K–Nearest Neighbor,†J. Ilm. Inform. Komput., vol. 25, no. 1, pp. 1–17, 2020.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).