Implementasi Recurrent Neural Network dalam Memprediksi Kepadatan Restoran Berbasis LSTM

 (*)Annisa Farhah Mail (Telkom University, Bandung, Indonesia)
 Anggunmeka Luhur Prasasti (Telkom University, Bandung, Indonesia)
 Marisa W Paryasto (Telkom University, Bandung, Indonesia)

(*) Corresponding Author

DOI: http://dx.doi.org/10.30865/mib.v5i2.2916

Abstract

In this modern era, restaurants are becoming very popular, especially in big cities. However, this can lead to density or queues of visitors at a restaurant, which should be avoided during the current Covid-19 pandemic. So that accurate information that can predict the density of restaurant will be very useful. In predicting the density of restaurants, data processing on the number of visitors obtained from one of the restaurants is carried out using artificial intelligence in the form of LSTM (Long Short Term Memory) RNN (Recurrent Neural Network). The results of the research on Recurrent Neural Network based on LSTM (Long Short Term Memory) at the best learning rate parameter of 0.001 and a maximum epoch of 2000 resulted in an MSE value of 0.00000278 on the training data and 0.0069 on the test data

Keywords


Prediction; Recurrent Neural Network; Long Short Term Memory

Full Text:

PDF


Article Metrics

Abstract view : 207 times
PDF - 56 times

References

D. Tuwu, “Kebijakan Pemerintah Dalam Penanganan Pandemi Covid-19,” J. Publicuho, vol. 3, no. 2, p. 267, 2020, doi: 10.35817/jpu.v3i2.12535.

E. Turban, E. McLean, and J. Wetherbe, Information Technology for Management: Transforming Organizations in the Digital Economy, 5th ed. Hoboke: John Wiley & Sons, 2009.

Herdianto, “Prediksi Kerusakan Motor Induksi Menggunakan Metode Jaringan Saraf Tiruan Backpropagation,” Universitas Sumatera Utara, 2013.

A. A. Rizal and S. Hartati, “PREDIKSI KUNJUNGAN WISATAWAN DENGAN RECURRENT NEURAL NETWORK EXTENDED KALMAN FILTER,” vol. X, no. 1, pp. 7–18, 2017.

D. Kriesel, A Brief Introduction to neural networks. 2007.

J. W. G. P. Putra, Pengenalan Konsep Pembelajaran Mesin dan Deep Learning, 1.2. Tokyo, 2018.

A. Pulver and S. Lyu, “LSTM with working memory,” Proc. Int. Jt. Conf. Neural Networks, vol. 2017-May, pp. 845–851, 2017, doi: 10.1109/IJCNN.2017.7965940.

C. Olah, “Understanding LSTM Network,” 2015. http://colah.github.io/posts/2015-08-%0AUnderstanding-LSTMs/.

A. A. Rizal and S. Soraya, “Multi Time Steps Prediction Dengan Recurrent Neural,” vol. 18, no. 1, pp. 115–124, 2018, doi: https://doi.org/10.30812/matrik.v18i1.344.

R. Fu, Z. Zhang, and L. Li, “Using LSTM and GRU Neural Network Methods for Traffic Flow Prediction,” 31st Youth Acad. Annu. Conf. Chinese Assoc. Autom., pp. 5–9, 2016, doi: 10.1109/YAC.2016.7804912.

C. Christiani, P. Tedjo, and B. Martono, “ANALISIS DAMPAK KEPADATAN PENDUDUK TERHADAP KUALITAS HIDUP MASYARAKAT PROVINSI JAWA TENGAH,” J. Ilm. UNTAG Semarang, pp. 102–114.

I. Bagoes and Mantra, Demografi Umum, Kedua. Yogyakarta: Pustaka Belajar, 2007.

M. T. N. Thalib, “Kepadatan Arus Lalu Lintas Pada Ruas Jalan,” J. Perad. saIns, rekayAsa dan Teknol. Sekol. Tinggi Tek. Bina Taruna Gorontalo, vol. 6, no. 1, pp. 59–68.

I. Afrianty, E. Humairah, S. Sanjaya, S. K. Gusti, and E. Rouza, “Penerapan Elman Recurrent Neural Network (ERNN) Untuk Prediksi Penjualan Pilus,” Semin. Nas. Teknol. Inf. Komun. dan Ind., vol. 0, no. 0, pp. 158–164, 2018, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/5964.

L. Zhang and P. B. Luh, “Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method,” IEEE Trans. Power Syst., vol. 20, no. 1, pp. 59–66, 2005, doi: 10.1109/TPWRS.2004.840416.

R. Adnan, F. A. Ruslan, A. M. Samad, and Z. M. Zain, “New Artificial Neural Network and Extended Kalman Filter hybrid model of flood prediction system,” Proc. - 2013 IEEE 9th Int. Colloq. Signal Process. its Appl. CSPA 2013, pp. 252–257, 2013, doi: 10.1109/CSPA.2013.6530051.

M. Kumar and A. Bala, “Analyzing Twitter sentiments through big data,” 3rd Int. Conf. Comput. Sustain. Glob. Dev., 2016.

M. K. Sandi, A. L. Prasasti, and M. W. Paryasto, “RESTAURANT DENSITY PREDICTION SYSTEM USING FEED FORWARD NEURAL NETWORK,” J. Ris. Inform., vol. 3, no. 2, 2021, [Online]. Available: http://ejournal.kresnamediapublisher.com/index.php/jri/article/view/202/81.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Recurrent Neural Network dalam Memprediksi Kepadatan Restoran Berbasis LSTM

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.