Clustering Kualitas Kinerja Karyawan Pada Perusahaan Bahan Kimia Menggunakan Algoritma K-Means

 Sandra Regina (STMIK Nusa Mandiri, DKI Jakarta, Indonesia)
 (*)Entin Sutinah Mail (Universitas Bina Sarana Informatika, DKI Jakarta, Indonesia)
 Nani Agustina (Universitas Bina Sarana Informatika, DKI Jakarta, Indonesia)

(*) Corresponding Author

DOI: http://dx.doi.org/10.30865/mib.v5i2.2909

Abstract

Assessment of the quality of employee performance is one of the important things and is very much needed by the company, however, PT Clariant Adsorbents Indonesia does not currently have an employee performance quality system. This study aims to see the productivity of an employee and the effectiveness of an employee's performance in the future. Employee performance appraisal is divided into several clusters that are highly productive, moderately productive and less productive. The method used in this study is the K-means method, where the k-means method is the most popular method in the clustering algorithm. The k-means method looks for some of the most optimal partitions of the processed data by minimizing the error of the criteria using the optimal iteration. The variables used consist of employee names, work quality scores, responsibility values, cooperation values, attendance values, and discipline values. This research in processing data using Rapidminer Version 7.6.0.0.1 using the K-means method. The final result of this research is to get the grouping of the assessment into several categories that are very productive, quite productive and less productive and the clustering results are 0.42% for cluster 1, very productive category, which consists of 16 employee data, 0.47% for cluster 2 quite productive category, which consists of 18 employee data, 0.11% for cluster 3, less productive category, which consists of 4 employee data.

Keywords


K-Means Algorithm; Clustering; Quality of Employee Performance

Full Text:

PDF


Article Metrics

Abstract view : 198 times
PDF - 66 times

References

S. N. Evita, W. O. Z. Muizu, and R. T. W. Atmojo, “Penilaian Kinerja Karyawan Dengan Menggunakan Metode Behaviorally Anchor Rating Scale dan Management By Objectives (Sudi kasus pada PT Qwords Company International),” Pekbis J., vol. 9, no. 1, pp. 18–32, 2017, [Online]. Available: https://www.neliti.com/id/publications/164390/penilaian-kinerja-karyawan-dengan-menggunakan-metode-behaviorally-anchor-rating.

D. Sartika and J. Jumadi, “Clustering Penilaian Kinerja Dosen Menggunakan Algoritma K-Means (Studi Kasus: Universitas Dehasen Bengkulu),” Sainteks 2019, pp. 703–709, 2019, [Online]. Available: https://seminar-id.com/semnas-sainteks2019.html.

H. Fadri, Z. Zulfadil, and T. Taufiqurrahman, “Analisis Kinerja Karyawan Pada Pt Perindustrian Dan Perdagangan Bangkinang,” J. Online Mhs. Fak. Ekon. Univ. Riau, vol. 4, no. 1, pp. 414–425, 2016, [Online]. Available: https://media.neliti.com/media/publications/121480-ID-analisis-kinerja-karyawan-pada-pt-perind.pdf.

B. M. . & Daryanto, Manajemen Penilaian Kinerja Karyawan. Malam: Gava Media, 2017.

L. V. Lie, “Analisis Pengaruh Kepuasan Kerja Terhadap Kinerja Karyawan Di Pt.X,” Agora, vol. 5, no. 1, pp. 1–5, 2017, [Online]. Available: http://publication.petra.ac.id/index.php/manajemen-bisnis/article/view/5305.

S. Setiawan, “Analisis Cluster Menggunakan Algoritma K-Means Untuk Mengetahui Kemampuan Pegawai Dibidang It Pada Cv . Roxed Ltd,” J. Pelita Inform., vol. 18, pp. 80–86, 2019, [Online]. Available: https://ejurnal.stmik-budidarma.ac.id/index.php/pelita/article/view/1142.

N. Agustina and P. Prihandoko, “Perbandingan Algoritma K-Means dengan Fuzzy C_Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan (Studi Kasus: Sekolah Tinggi Teknologi Bandung),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 3, pp. 621–626, 2018, doi: 10.29207/resti.v2i3.492.

M. R. L. Iin Parlina, Agus Perdana Windarto, Anjar Wanto, “Memanfaatkan Algoritma K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Center,” Memanfaatkan Algoritm. K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Cent. Untuk Clust. Progr. Sdp, vol. 3, no. 1, pp. 87–93, 2018, [Online]. Available: https://jurnal.unimed.ac.id/2012/index.php/cess/article/view/8192.

D. Imantika et al., “Penerapan metode k-means clustering dan analytical hierarchy process (ahp) untuk pengelompokan kinerja guru dan karyawan pada sma brawijaya smart school,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. J-PTIIK, vol. 3, no. 8, pp. 7382–7390, 2019, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5958.

F. A. Hermawati, Data Mining (Putri Christian, ed.). Surabaya: Andi Offset, 2013.

S. Handoko, F. Fauziah, and E. T. E. Handayani, “Implementasi Data Mining Untuk Menentukan Tingkat Penjualan Paket Data Telkomsel Menggunakan Metode K-Means Clustering,” J. Ilm. Teknol. dan Rekayasa, vol. 25, no. 1, pp. 76–88, 2020, doi: 10.35760/tr.2020.v25i1.2677.

F. Yunita, “Penerapan Data Mining Menggunkan Algoritma K-Means Clustring Pada Penerimaan Mahasiswa Baru (Studi Kasus : Universitas Islam Indragiri),” J. Sist., vol. 7, no. September, pp. 238–249, 2018, [Online]. Available: http://sistemasi.ftik.unisi.ac.id/index.php/stmsi/article/view/388.

F. N. R. F. Aziz, B. D. Setiawan, and I. Arwani, “Implementasi Algoritma K-Means untuk Klasterisasi Kinerja Akademik Mahasiswa,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 6, pp. 2243–2251, 2018, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1571.

R. T. Vulandari, Data Mining (Teori dan Aplikasi Rapidminer). Surakarta: Gava Media, 2017.

C. M. Fikri, F. Eka, M. Agustin, and F. Mintarsih, “Pegawai Menggunakan Algoritma K-Means ++ Dan Cop-Kmeans Untuk Merencanakan Program Pemeliharaan Kesehatan Pegawai,” J. Pesudocode, vol. IV, pp. 9–17, 2017, [Online]. Available: https://ejournal.unib.ac.id/index.php/pseudocode/article/view/2572.

I. G. B. R. Utama, Statistika Penelitian Bisnis & Pariwisata. Yogyakarta: Andi, 2018.

E. . Sangadji & Sofiah, Metodologi Penelitian-Pendekatan Praktis Dalam Penelitian (1st ed.). Yogyakarta: Andi Offset, 2010.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Clustering Kualitas Kinerja Karyawan Pada Perusahaan Bahan Kimia Menggunakan Algoritma K-Means

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.