Klasifikasi Dialek Pengujar Bahasa Inggris Menggunakan Random Forest
DOI:
https://doi.org/10.30865/mib.v5i2.2754Keywords:
Dialect recognition, Speech Recognition, Imbalance Class, MFCC, Random ForestAbstract
Speech recognition is one of the important research fields which is currently widely used for various applications. However, speech recognition performance is affected by the dialect of the speaker. Therefore, dialect recognition is often used as an additional feature in speech recognition. The process of recognizing dialects is not easy. Currently, Machine Learning technology is widely applied in dialect recognition. One of the challenges in the introduction of machine learning-based dialects is the imbalance of classes and overlaps in a wide variety of classification techniques. This study applies Random Forest-based oversampling technology for dialect recognition. For hyper-parameter optimization of the random forest algorithm, we apply the Grid Search method. Experiments on Speech Accent Archive data using the MFCC feature resulted in an accuracy of 0.91 and AUC of 0.95References
R. B. Handoko and S. Suyanto, “Klasifikasi Gender Berdasarkan Suara Menggunakan Support Vector Machine,†Indones. J. Comput., 2019, doi: 10.21108/indojc.2019.4.1.244.
I. S. Permana, Y. Indrawaty, and A. Zulkarnain, “IMPLEMENTASI METODE MFCC DAN DTW UNTUK PENGENALAN JENIS SUARA PRIA DAN WANITA,†MIND J., vol. 3, no. 1, pp. 61–76, Jan. 2019, doi: 10.26760/mindjournal.v3i1.61-76.
A. Setiawan, A. Hidayatno, and R. Isnanto, Rizal, “Aplikasi Pengenalan Ucapan dengan Ekstraksi Mel-Frequency Cepstrum Coefficients (MFCC) Melalui Jaringan Syaraf Tiruan (JST) Learning Vector Quantization (LVQ) untuk Mengoperasikan Kursor Komputer,†Apl. Pengenalan Ucapan dengan Ekstraksi Mel-Frequency Cepstrum Coefficients Melalui Jar. Syaraf Tiruan Learn. Vector Quantization untuk Mengoperasikan Kursor Komput., 2011, doi: 10.12777/transmisi.13.3.82-86.
N. Nurhamidah, E. C. Djamal, and R. Ilyas, “Perintah Menggunakan Sinyal Suara dengan Mel- Frequency Cepstrum Coefficients dan Learning Vector Quantization,†Semin. Nas. Apl. Teknol. Inf. 2017, 2017.
A. Lukman and W. T. Saputro, “IDENTIFIKASI NYAMUK CULEX DAN AEDES AEGYPTI BETINA MENGGUNAKAN LINIER PREDICTIVE CODING DAN JARINGAN SYARAF TIRUAN LEARNING VECTOR QUANTIZATION,†JIKO (Jurnal Inform. dan Komputer), vol. 1, no. 2, Sep. 2016, doi: 10.26798/jiko.2016.v1i2.33.
D. Satria and M. Mushthofa, “Perbandingan Metode Ekstraksi Ciri Histogram dan PCA untuk Mendeteksi Stoma pada Citra Penampang Daun Freycinetia,†J. Ilmu Komput. dan Agri-Informatika, 2013, doi: 10.29244/jika.2.1.20-28.
A. K. H. Al-Ali, D. Dean, B. Senadji, V. Chandran, and G. R. Naik, “Enhanced Forensic Speaker Verification Using a Combination of DWT and MFCC Feature Warping in the Presence of Noise and Reverberation Conditions,†IEEE Access, vol. 5, pp. 15400–15413, 2017, doi: 10.1109/ACCESS.2017.2728801.
Kunxia Wang, Ning An, Bing Nan Li, Yanyong Zhang, and Lian Li, “Speech Emotion Recognition Using Fourier Parameters,†IEEE Trans. Affect. Comput., vol. 6, no. 1, pp. 69–75, Jan. 2015, doi: 10.1109/TAFFC.2015.2392101.
L. Juvela et al., “Speech Waveform Synthesis from MFCC Sequences with Generative Adversarial Networks,†in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2018, doi: 10.1109/ICASSP.2018.8461852.
T. Bent, E. Atagi, A. Akbik, and E. Bonifield, “Classification of regional dialects, international dialects, and nonnative accents,†J. Phon., 2016, doi: 10.1016/j.wocn.2016.08.004.
B. S. Raghuwanshi and S. Shukla, “SMOTE based class-specific extreme learning machine for imbalanced learning,†Knowledge-Based Syst., vol. 187, p. 104814, Jan. 2020, doi: 10.1016/j.knosys.2019.06.022.
S. Vluymans, “Learning from Imbalanced Data,†in Studies in Computational Intelligence, 2019, pp. 81–110.
A. Sonak, R. Patankar, and N. Pise, “A new approach for handling imbalanced dataset using ANN and genetic algorithm,†in International Conference on Communication and Signal Processing, ICCSP 2016, 2016, doi: 10.1109/ICCSP.2016.7754521.
Shuo Wang and Xin Yao, “Using Class Imbalance Learning for Software Defect Prediction,†IEEE Trans. Reliab., vol. 62, no. 2, pp. 434–443, Jun. 2013, doi: 10.1109/TR.2013.2259203.
Y. Singh, A. Pillay, and E. Jembere, “Features of Speech Audio for Accent Recognition,†in 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), Aug. 2020, pp. 1–6, doi: 10.1109/icABCD49160.2020.9183893.
S. Helmiyah, I. Riadi, R. Umar, and A. Hanif, “Ekstraksi Fitur Pengenalan Emosi Berdasarkan Ucapan Menggunakan Linear Predictor Ceptral Coeffecient Dan Mel Frequency Cepstrum Coefficients,†Mob. Forensics, vol. 1, no. 2, p. 48, Dec. 2019, doi: 10.12928/mf.v1i2.1259.
A. Syukron and A. Subekti, “Penerapan Metode Random Over-Under Sampling dan Random Forest Untuk Klasifikasi Penilaian Kredit,†J. Inform., vol. 5, no. 2, pp. 175–185, Sep. 2018, doi: 10.31294/ji.v5i2.4158.
K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers, and D. Rueckert, “Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease,†Neuroimage, vol. 65, pp. 167–175, Jan. 2013, doi: 10.1016/j.neuroimage.2012.09.065.
M. Belgiu and L. Drăguţ, “Random forest in remote sensing: A review of applications and future directions,†ISPRS J. Photogramm. Remote Sens., vol. 114, pp. 24–31, Apr. 2016, doi: 10.1016/j.isprsjprs.2016.01.011.
Y. Shuai, Y. Zheng, and H. Huang, “Hybrid Software Obsolescence Evaluation Model Based on PCA-SVM-GridSearchCV,†in 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Nov. 2018, pp. 449–453, doi: 10.1109/ICSESS.2018.8663753.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).