Deteksi Kelayuan Pada Bunga Mawar dengan Metode Transformasi Ruang Warna Hue Saturation Intensity (HSI) dan Hue Saturation Value (HSV)

 (*)Dede Wandi Mail (Universitas Nasional, Jakarta, Indonesia)
 Fauziah Fauziah (Universitas Nasional, Jakarta, Indonesia)
 Nur Hayati (Universitas Nasional, Jakarta, Indonesia)

(*) Corresponding Author

Submitted: October 31, 2020; Published: January 22, 2021

DOI: http://dx.doi.org/10.30865/mib.v5i1.2562

Abstract

The rose is a plant of the genus Rosa. The rose consists of more than 100 species with various colors. In selecting and sorting roses, roses are often found that are still fresh and wilted. Based on the problems faced in roses, a system design is carried out that can detect the wilting condition of roses. By applying the HSI and HSV methods to image processing applications, it is hoped that it can help in choosing the condition of roses. With research methods through observation and literature study. To see the conditions, roses can be divided into wilted flowers and fresh flowers. In its implementation and classification, by detecting the color of roses in the HSI and HSV color space, from a total of 230 images of red and white roses that tested 200 images using HSI and HSV, the value of Range was obtained on the HSI, H = 0.240634 - 0.5, S = 0.781818 - 1, and I = 0.477124 - 1 in the Fresh category, while the HSI Wilt Category, H = 0.170495 - 0.5, S = 0.40239 - 1, I = 0.562092 - 1. and also obtained the value of Range with HSV with Fresh category H = 0.240634 - 0.5, S = 0 - 0.988235, V = 0 - 0.988235, and Wilt category H = 0.170495-0.5, S = 0 - 0.996078, V = 0 - 0.996078. With an accuracy value of the HSI and HSV of 86.9%. Therefore, it can be concluded that the detection of wilting in roses using the HSI and HSV methods is the fastest in the process using the HSI method because it reads all the min-max values.

Keywords


Withering Detection; Rose Detection; Image Processing; HIS; HSV

Full Text:

PDF


Article Metrics

Abstract View: 74 times | PDF View: 22 times

References

B. Yoga et al., “Segmentasi warna citra dengan deteksi warna hsv untuk mendeteksi objek,” J. Inform., vol. 6, no. 2, 2010.

A. N. H, M. Ichwan, and I. M. S. Putra, “Segmentasi Citra Untuk Deteksi Objek Warna Pada Aplikasi Pengambilan Bentuk Citra Rectangle,” J. Unpubl., pp. 1–10, 2015.

Y. Permadi and Murinto, “Aplikasi Pengolahan Citra Untuk Identifikasi Kematangan Mentimun Berdasarkan Tekstur Kulit Buah Menggunakan Metode Ekstraksi Ciri Statistik,” J. Inform., vol. 9, no. 1, pp. 1028–1038, 2015.

D. A. Prabowo, D. Abdullah, and A. Manik, “DETEKSI DAN PERHITUNGAN OBJEK BERDASARKAN WARNA MENGGUNAKAN COLOR OBJECT TRACKING,” vol. V, no. September, pp. 85–91, 2018.

F. Muwardi and A. Fadlil, “Sistem Pengenalan Bunga Berbasis Pengolahan Citra dan Pengklasifikasi Jarak,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 3, no. 2, p. 124, 2018, doi: 10.26555/jiteki.v3i2.7470.

H. Edha, S. H. Sitorus, U. Ristian, J. Rakayasa, and S. Komputer, “Penerapan Metode Transformasi Ruang Warna Hue Saturation Intensity (HSI) Untuk Mendeteksi Kematangan Buah Mangga Harum Manis,” J. Komput. dan Apl., vol. 08, no. 1, pp. 1–10, 2020.

N. Sularida, J. Y. Sari, I. Purwanti, and N. Purnama, “Identifikasi Tingkat Kematangan Buah Pisang Menggunakan Metode Ektraksi Ciri Statistik Pada Warna Kulit Buah,” ULTIMATICS, vol. X, no. 2, 2018, doi: 10.31937/ti.v10i2.1004.

P. Rianto and A. Harjoko, “Penentuan Kematangan Buah Salak Pondoh Di Pohon Berbasis Pengolahan Citra Digital,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 11, no. 2, p. 143, 2017, doi: 10.22146/ijccs.17416.

F. R. Lestari, J. Y. Sari, Sutardi, and I. Purwanti, “Deteksi Penyakit Tanaman Jeruk Siam Berdasarkan Citra Daun Menggunakan Segmentasi Warna RGB-HSV,” no. December, pp. 276–283, 2018.

E. Blotta, A. Bouchet, V. Ballarin, and J. Pastore, “Enhancement of medical images in HSI color space,” J. Phys. Conf. Ser., vol. 332, no. 1, 2011, doi: 10.1088/1742-6596/332/1/012041.

A. Qur’ania, L. Karlitasar, and S. Maryana, “Analisis Tektur Dan Ekstraksi Fitur Warna Untuk Klasifikasi Apel Berbasis Citra,” pp. 296–304, 2012.

A. N. T. RD. Kusumanto, “Pengolahan Citra Digital Untuk Mendeteksi Obyek Menggunakan Pengolahan Warna Model Normalisasi Rgb,” Semin. Nas. Teknol. Inf. Komun. Terap. 2011, 2011, doi: 10.1016/S0166-1116(08)71924-1.

A. K. Panggabean, A. Syahfaridzah, and N. A. Ardiningih, “Mendeteksi Objek Berdasarkan Warna Dengan Segmentasi Warna HSV Menggunakan Aplikasi Matlab,” METHOMIKA J. Manaj. Inform. Komputerisasi Akunt., vol. 4, no. 2, pp. 94–97, 2020.

Y. K. Arinda, M. A. Rahman, and D. Alamsyah, “Klasifikasi Jenis Bunga menggunakan SVM dengan Fitur HSV dan HOG,” Ijccs, no. x, pp. 1–12, 2018.

U. Proboyekti, “Bahan Ajar Rekayasa Perangkat Lunak Agile Software Development,” Indonesia.

K. S. Haryana, “Penerapan Agile Development Methods Dengan Framework Scrum Pada Perancangan Perangkat Lunak Kehadiran Rapat Umum Berbasis Qr-Code,” J. Comput. Bisnis, vol. 13, no. 2, pp. 70–79, 2019.

R. Pratama, A. F. Assagaf, and F. Tempola, “Deteksi Kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan Metode Transformasi Ruang Warna HIS,” JIKO (Jurnal Inform. dan Komputer), vol. 2, no. 2, pp. 81–86, 2019, doi: http://dx.doi.org/10.33387/jiko.

N. Arifin and I. S. Areni, “Klasifikasi Kematangan Stroberi Berbasis Segmentasi Warna dengan Metode HSV,” vol. 23, no. 2, pp. 113–116, 2019, doi: 10.25042/jpe.112019.03.

H. Risman, D. Nugroho, and Y. R. WU, “Penerapan Metode K-Nearest Neighbor Pada Aplikasi,” Jural TIKomSiN, vol. 3, no. 2, pp. 19–25, 2013.

N. K. S. Ningrum and T. Ellen, “Ekstraksi Warna Berdasarkan Rgb Untuk Menentukan Tingkat Kematangan Daun Tembakau,” Pros. SNATIF Ke -5 Tahun 2018, pp. 96–101, 2019.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Deteksi Kelayuan Pada Bunga Mawar dengan Metode Transformasi Ruang Warna Hue Saturation Intensity (HSI) dan Hue Saturation Value (HSV)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.