Deteksi Kelayuan Pada Bunga Mawar dengan Metode Transformasi Ruang Warna Hue Saturation Intensity (HSI) dan Hue Saturation Value (HSV)
DOI:
https://doi.org/10.30865/mib.v5i1.2562Keywords:
Withering Detection, Rose Detection, Image Processing, HIS, HSVAbstract
The rose is a plant of the genus Rosa. The rose consists of more than 100 species with various colors. In selecting and sorting roses, roses are often found that are still fresh and wilted. Based on the problems faced in roses, a system design is carried out that can detect the wilting condition of roses. By applying the HSI and HSV methods to image processing applications, it is hoped that it can help in choosing the condition of roses. With research methods through observation and literature study. To see the conditions, roses can be divided into wilted flowers and fresh flowers. In its implementation and classification, by detecting the color of roses in the HSI and HSV color space, from a total of 230 images of red and white roses that tested 200 images using HSI and HSV, the value of Range was obtained on the HSI, H = 0.240634 - 0.5, S = 0.781818 - 1, and I = 0.477124 - 1 in the Fresh category, while the HSI Wilt Category, H = 0.170495 - 0.5, S = 0.40239 - 1, I = 0.562092 - 1. and also obtained the value of Range with HSV with Fresh category H = 0.240634 - 0.5, S = 0 - 0.988235, V = 0 - 0.988235, and Wilt category H = 0.170495-0.5, S = 0 - 0.996078, V = 0 - 0.996078. With an accuracy value of the HSI and HSV of 86.9%. Therefore, it can be concluded that the detection of wilting in roses using the HSI and HSV methods is the fastest in the process using the HSI method because it reads all the min-max values.
References
B. Yoga et al., “Segmentasi warna citra dengan deteksi warna hsv untuk mendeteksi objek,†J. Inform., vol. 6, no. 2, 2010.
A. N. H, M. Ichwan, and I. M. S. Putra, “Segmentasi Citra Untuk Deteksi Objek Warna Pada Aplikasi Pengambilan Bentuk Citra Rectangle,†J. Unpubl., pp. 1–10, 2015.
Y. Permadi and Murinto, “Aplikasi Pengolahan Citra Untuk Identifikasi Kematangan Mentimun Berdasarkan Tekstur Kulit Buah Menggunakan Metode Ekstraksi Ciri Statistik,†J. Inform., vol. 9, no. 1, pp. 1028–1038, 2015.
D. A. Prabowo, D. Abdullah, and A. Manik, “DETEKSI DAN PERHITUNGAN OBJEK BERDASARKAN WARNA MENGGUNAKAN COLOR OBJECT TRACKING,†vol. V, no. September, pp. 85–91, 2018.
F. Muwardi and A. Fadlil, “Sistem Pengenalan Bunga Berbasis Pengolahan Citra dan Pengklasifikasi Jarak,†J. Ilm. Tek. Elektro Komput. dan Inform., vol. 3, no. 2, p. 124, 2018, doi: 10.26555/jiteki.v3i2.7470.
H. Edha, S. H. Sitorus, U. Ristian, J. Rakayasa, and S. Komputer, “Penerapan Metode Transformasi Ruang Warna Hue Saturation Intensity (HSI) Untuk Mendeteksi Kematangan Buah Mangga Harum Manis,†J. Komput. dan Apl., vol. 08, no. 1, pp. 1–10, 2020.
N. Sularida, J. Y. Sari, I. Purwanti, and N. Purnama, “Identifikasi Tingkat Kematangan Buah Pisang Menggunakan Metode Ektraksi Ciri Statistik Pada Warna Kulit Buah,†ULTIMATICS, vol. X, no. 2, 2018, doi: 10.31937/ti.v10i2.1004.
P. Rianto and A. Harjoko, “Penentuan Kematangan Buah Salak Pondoh Di Pohon Berbasis Pengolahan Citra Digital,†IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 11, no. 2, p. 143, 2017, doi: 10.22146/ijccs.17416.
F. R. Lestari, J. Y. Sari, Sutardi, and I. Purwanti, “Deteksi Penyakit Tanaman Jeruk Siam Berdasarkan Citra Daun Menggunakan Segmentasi Warna RGB-HSV,†no. December, pp. 276–283, 2018.
E. Blotta, A. Bouchet, V. Ballarin, and J. Pastore, “Enhancement of medical images in HSI color space,†J. Phys. Conf. Ser., vol. 332, no. 1, 2011, doi: 10.1088/1742-6596/332/1/012041.
A. Qur’ania, L. Karlitasar, and S. Maryana, “Analisis Tektur Dan Ekstraksi Fitur Warna Untuk Klasifikasi Apel Berbasis Citra,†pp. 296–304, 2012.
A. N. T. RD. Kusumanto, “Pengolahan Citra Digital Untuk Mendeteksi Obyek Menggunakan Pengolahan Warna Model Normalisasi Rgb,†Semin. Nas. Teknol. Inf. Komun. Terap. 2011, 2011, doi: 10.1016/S0166-1116(08)71924-1.
A. K. Panggabean, A. Syahfaridzah, and N. A. Ardiningih, “Mendeteksi Objek Berdasarkan Warna Dengan Segmentasi Warna HSV Menggunakan Aplikasi Matlab,†METHOMIKA J. Manaj. Inform. Komputerisasi Akunt., vol. 4, no. 2, pp. 94–97, 2020.
Y. K. Arinda, M. A. Rahman, and D. Alamsyah, “Klasifikasi Jenis Bunga menggunakan SVM dengan Fitur HSV dan HOG,†Ijccs, no. x, pp. 1–12, 2018.
U. Proboyekti, “Bahan Ajar Rekayasa Perangkat Lunak Agile Software Development,†Indonesia.
K. S. Haryana, “Penerapan Agile Development Methods Dengan Framework Scrum Pada Perancangan Perangkat Lunak Kehadiran Rapat Umum Berbasis Qr-Code,†J. Comput. Bisnis, vol. 13, no. 2, pp. 70–79, 2019.
R. Pratama, A. F. Assagaf, and F. Tempola, “Deteksi Kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan Metode Transformasi Ruang Warna HIS,†JIKO (Jurnal Inform. dan Komputer), vol. 2, no. 2, pp. 81–86, 2019, doi: http://dx.doi.org/10.33387/jiko.
N. Arifin and I. S. Areni, “Klasifikasi Kematangan Stroberi Berbasis Segmentasi Warna dengan Metode HSV,†vol. 23, no. 2, pp. 113–116, 2019, doi: 10.25042/jpe.112019.03.
H. Risman, D. Nugroho, and Y. R. WU, “Penerapan Metode K-Nearest Neighbor Pada Aplikasi,†Jural TIKomSiN, vol. 3, no. 2, pp. 19–25, 2013.
N. K. S. Ningrum and T. Ellen, “Ekstraksi Warna Berdasarkan Rgb Untuk Menentukan Tingkat Kematangan Daun Tembakau,†Pros. SNATIF Ke -5 Tahun 2018, pp. 96–101, 2019.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).