Penentuan Kelas Menggunakan Algoritma K Medoids Untuk Clustering Siswa Tunagrahita

 (*)Husin Sariangsah Mail (Universitas Potensi Utama, Medan, Indonesia)
 Wanayumini Wanayumini (Universitas Potensi Utama, Medan, Indonesia)
 Rika Rosnelly (Universitas Potensi Utama, Medan, Indonesia)

(*) Corresponding Author

Submitted: October 21, 2020; Published: January 22, 2021

DOI: http://dx.doi.org/10.30865/mib.v5i1.2547

Abstract

So far, the class placement of mentally retarded students is based on the age of entering the child when registering at SLB C Muzdalifah, the Intelligence Quotient (IQ) test has not been tried for mentally retarded students in classifying student classes. It is important to group mentally retarded children to make it easier for teachers to prepare programs and implement educational services. It is important for the school to understand that in mentally retarded children there are individual differences with very large variations. That is, being at almost the same age level (calendar age and mental age) and the same education level, in fact individual abilities differ from one another. Thus, of course, special strategies and programs are needed that are adapted to individual differences. This research was made to classify and analyze data mining for class clustering students with the K-Medoids algorithm to help group students who want to occupy classes according to their level of intellectual disability. From the grouping results obtained 3 clusters, which have the highest number of students is the moderate mental retardation class and the lowest cluster is mild mental retardation, the Muzdalifah special school can prepare classes based on grouping for teaching and learning activities.

Keywords


Clustering, K-Medoids, Tunagrahita

Full Text:

PDF


Article Metrics

Abstract View: 64 times | PDF View: 21 times

References

S. Mulyati, “Penerapan Data Mining dengan Metode Clustering untuk Pengelompokan Data Pengiriman Burung,” Pros. Semin. Ilm. Nas. Teknol. Komput., vol. 1, no. Senatkom, pp. 30–35, 2015.

W. A. Triyanto, “ALGORITMA K-MEDOIDS UNTUK PENENTUAN STRATEGI PEMASARAN,” J. SIMETRIS, vol. 6, no. 1, pp. 183–188, 2015.

D. Marlina, N. F. Putri, A. Fernando, and A. Ramadhan, “Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak,” J. CoreIT, Vol.4, No.2, Desember 2018 ISSN 2460-738X ISSN 2599-3321 Implementasi, vol. 4, no. 2, p. 64, 2018, doi: 10.24014/coreit.v4i2.4498.

I. B. A. Peling, I. N. Arnawan, I. P. A. Arthawan, and I. G. N. Janardana, “Implementation of Data Mining To Predict Period of Students Study Using Naive Bayes Algorithm,” Int. J. Eng. Emerg. Technol., vol. 2, no. 1, p. 53, 2017, doi: 10.24843/ijeet.2017.v02.i01.p11.

R. Sitanggang, T. Tulus, and Z. Situmorang, “The analysis performance method naive bayes andssvm determine pattern groups of disease,” J. Phys. Conf. Ser., vol. 930, no. 1, 2017, doi: 10.1088/1742-6596/930/1/012031.

M. Sadikin, R. Rosnelly, and T. S. Gunawan, “Perbandingan Tingkat Akurasi Klasifikasi Penerimaan Dosen Tetap Menggunakan Metode Naive Bayes Classifier dan C4 . 5,” J. MEDIA Inform. BUDIDARMA, vol. 4, pp. 1100–1109, 2020, doi: 10.30865/mib.v4i4.2434.

F. Harahap, A. Y. N. Harahap, E. Ekadiansyah, R. N. Sari, R. Adawiyah, and C. B. Harahap, “Implementation of Naïve Bayes Classification Method for Predicting Purchase,” 2018 6th Int. Conf. Cyber IT Serv. Manag. CITSM 2018, no. Citsm, pp. 1–5, 2019, doi: 10.1109/CITSM.2018.8674324.

Z. S. Cindy Paramitha Lubis1, Rika Rosnelly 2, Roslina3, “PENERAPAN METODE NAÏVE BAYES DAN C4.5 PADA PENERIMAAN PEGAWAI DI UNIVERSITAS POTENSI UTAMA,” CSRID J., vol. Vol. 12, pp. 51–63, 2020.

Wanayumini, O. S. Sitompul, S. Suwilo, and M. Zarlis, “Supervised image classification of chaos phenomenon in cumulonimbus cloud using spectral angle mapper,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 3, pp. 987–992, 2020, doi: 10.18517/ijaseit.10.3.11493.

F. Harahap, “Penerapan Data Mining dalam Memprediksi Pembelian cat,” Konf. Nas. Sist. Inform., vol. 1, no. 2, pp. 102–108, 2015, doi: 10.1017/CBO9781107415324.004.

N. Yosiani, “RELASI KARAKTERISTIK ANAK TUNAGRAHITA DENGAN POLA TATA RUANG BELAJAR DI SEKOLAH LUAR BIASA,” vol. 1, no. 2, pp. 178–188, 2014.

E. Rochyadi, “Pengantar Pendidikan Luar Biasa,” File.Upi.Edu, pp. 1–54, 2012, [Online]. Available: http://file.upi.edu/Direktori/Fip/Jur._Pend._Luar_Biasa/195608181985031-Endang_Rochyadi/Modul/Pgsd4409-M6-LPK.pdf.

S. Suprianto, “Implementasi Algoritma Naive Bayes Untuk Menentukan Lokasi Strategis Dalam Membuka Usaha Menengah Ke Bawah di Kota Medan (Studi Kasus: Disperindag Kota Medan),” J. Sist. Komput. dan Inform., vol. 1, no. 2, p. 125, 2020, doi: 10.30865/json.v1i2.1939.

Hartono, O. E., and A. D., “Determining a cluster centroid of k-means clustering using genetic algorithm,” Int. J. Comput. Sci. Softw. Eng., vol. 4, no. 6, pp. 160–164, 2015.

B. Riyanto, “Penerapan Algoritma K-Medoids Clustering Untuk Pengelompokkan Penyebaran Diare Di Kota Medan (Studi Kasus: Kantor Dinas Kesehatan Kota Medan),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 562–568, 2019, doi: 10.30865/komik.v3i1.1659.

A. Bhat, “K-Medoids Clustering Using Partitioning Around Medoids for Performing Face Recognition,” Int. J. Soft Comput. Math. Control, vol. 3, no. 3, pp. 1–12, 2014, doi: 10.14810/ijscmc.2014.3301.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penentuan Kelas Menggunakan Algoritma K Medoids Untuk Clustering Siswa Tunagrahita

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.