Bagian 2: Model Arsitektur Neural Network Dengan Kombinasi K-Medoids dan Backpropagation pada kasus Pandemi Covid-19 di Indonesia

 (*)Agus Perdana Windarto Mail (STIKOM Tunas Bangsa, Pematangsiantar, Indonesia)
 Jufriadif Na`am (Universitas Putra Indonesia YPTK Padang, Padang, Indonesia)
 Yuhandri Yuhandri (Universitas Putra Indonesia YPTK Padang, Padang, Indonesia)
 Anjar Wanto (STIKOM Tunas Bangsa, Pematangsiantar, Indonesia)
 Mesran Mesran (Universitas Budi Darma, Medan, Indonesia)

(*) Corresponding Author

Submitted: September 21, 2020; Published: October 20, 2020

DOI: http://dx.doi.org/10.30865/mib.v4i4.2505

Abstract

The aim of the research is to create a prediction model on the best neural network architecture by combining the k-medoids and backpropagation methods in the case of the COVID-19 pandemic in Indonesia. Data obtained from the Ministry of Health is sampled and processed from covid19.go.id and bnpb.go.id. The case raised was the number of the spread of the COVID-19 pandemic in Indonesia as of July 7, 2020, with 34 records. The variables used in this study are the number of positive cases (x1), the number of cases cured (x2), and the number of deaths (x3) by province. The process of data analysis uses the help of RapidMiner software. The solution provided is to combine the k-medoids and backpropagation methods. Where the k-medoids method is mapping the specified cluster. The cluster labels used are high cluster (C1 = red zone), alert cluster (C2 = yellow zone), low cluster (C3 = green zone). The results of cluster mapping are continued to the backpropagation method to predict the accuracy of the existing cluster results. By using the best architectural model 3-2-1, the accuracy value is 94.17% with learning_rate = 0.696. Cluster mapping results obtained nine provinces are in the high cluster (C1 = red zone), three provinces are in the alert cluster (C2 = yellow zone), and 22 provinces are in the low cluster (C3 = green zone). It is expected that the results of the research can provide information to the government in the form of cluster mapping of regions in Indonesia.

Keywords


COVID-19 Pandemic, K-Medoids, Backpropagation, Prediction, Architectural Models, Neural Network

Full Text:

PDF


Article Metrics

Abstract View: 166 times | PDF View: 71 times

References

D. R. Buana, “Analisis Perilaku Masyarakat Indonesia dalam Menghadapi Pandemi Covid-19 dan Kiat Menjaga Kesejahteraan Jiwa,” SALAM; J. Sos. Budaya Syar-i, vol. 7, no. 3, pp. 217–226, 2020, doi: 10.15408/sjsbs.v7i3.15082.

M. Pradana, S. Syahputra, A. Wardhana, B. R. Kartawinata, and C. Wijayangka, “The Effects of Incriminating COVID-19 News on the Returning Indonesians’ Anxiety,” J. Loss Trauma, vol. 0, no. 0, pp. 1–6, 2020, doi: 10.1080/15325024.2020.1771825.

I. M. A. Wirawan and P. P. Januraga, “Forecasting COVID-19 Transmission and Healthcare Capacity in Bali, Indonesia,” J. Prev. Med. Public Health, vol. 53, no. 3, pp. 158–163, 2020, doi: 10.3961/jpmph.20.152.

Nurkholis, “Dampak Pandemi Novel-Corona Virus Disiase (Covid-19) Terhadap Psikologi Dan Pendidikan Serta Kebijakan Pemerintah,” J. PGSD, vol. 6, no. 1, pp. 39–49, 2020, doi: 10.32534/jps.v6i1.1035.

N. Nuraini, K. Khairudin, and M. Apri, “Modeling Simulation of COVID-19 in Indonesia based on Early Endemic Data,” Commun. Biomath. Sci., vol. 3, no. 1, pp. 1–8, 2020, doi: 10.5614/cbms.2020.3.1.1.

W. Swastika, “Studi Awal Deteksi Covid-19 Menggunakan Citra Ct Berbasis Deep,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, pp. 629–634, 2020, doi: 10.25126/jtiik.202073399.

A. Pujianto, K. Kusrini, and A. Sunyoto, “Perancangan Sistem Pendukung Keputusan Untuk Prediksi Penerima Beasiswa Menggunakan Metode Neural Network Backpropagation,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, p. 157, 2018, doi: 10.25126/jtiik.201852631.

F. Rahman, I. I. Ridho, M. Muflih, S. Pratama, M. R. Raharjo, and A. P. Windarto, “Application of Data Mining Technique using K-Medoids in the case of Export of Crude Petroleum Materials to the Destination Country Application of Data Mining Technique using K-Medoids in the case of Export of Crude Petroleum Materials to the Destination C,” 2020, doi: 10.1088/1757-899X/835/1/012058.

I. Kamila, U. Khairunnisa, and Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, pp. 119–125, 2019.

H. Haviluddin, Z. Arifin, A. H. Kridalaksana, and D. Cahyadi, “Prediksi Kedatangan Turis Asing ke Indonesia Menggunakan Backpropagation Neural Networks,” J. Teknol. dan Sist. Komput., vol. 4, no. 4, p. 485, 2016, doi: 10.14710/jtsiskom.4.4.2016.485-490.

A. P. Windarto, U. Indriani, M. R. Raharjo, and L. S. Dewi, “Bagian 1: Kombinasi Metode Klastering dan Klasifikasi (Kasus Pandemi Covid-19 di Indonesia),” J. Media Inform. Budidarma, vol. 4, no. 3, p. 855, 2020, doi: 10.30865/mib.v4i3.2312.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Bagian 2: Model Arsitektur Neural Network Dengan Kombinasi K-Medoids dan Backpropagation pada kasus Pandemi Covid-19 di Indonesia

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.