Implementasi Canny Edge Detection Pada Aplikasi Pendeteksi Jalur Lalu Lintas

 (*)Ratna Salkiawati Mail (Universitas Bhayangkara Jakarta Raya, Jakarta, Indonesia)
 Allan Desi Alexander (Universitas Bhayangkara Jakarta Raya, Jakarta, Indonesia)
 Hendarman Lubis (Universitas Bhayangkara Jakarta Raya, Jakarta, Indonesia)

(*) Corresponding Author

Submitted: September 18, 2020; Published: January 22, 2021

DOI: http://dx.doi.org/10.30865/mib.v5i1.2502

Abstract

Based on the traffic accident report, it was found that there were 41,771 (Forty-one thousand seven hundred and seventy-one) incidents caused by disorderly drivers. (POLRI, 2018). One of these disorders is by driving a motorized vehicle outside the traffic lane. In this study, researchers developed computer vision using sensor methods and image processing. The stages in computer vision are the image acquisition process, the image segmentation process, and the image understanding process. This study aims to develop an application using computer vision to warn drivers of disorderly traffic or to increase the alertness of motorized vehicle drivers by detecting the condition of the driver's path. It is hoped that this research will provide a sense of security for motorized vehicle drivers, as well as provide applications that are expected to increase driver awareness to avoid traffic accidents

Keywords


Computer Vision; Sensor, Image Processing; Traffic; Safety

Full Text:

PDF


Article Metrics

Abstract View: 130 times | PDF View: 17 times

References

N. F. Ardiansyah, A. Rabi’, D. Minggu, and W. Dirgantara, “Computer Vision Untuk Pengenalan Obyek Pada Peluncuran Roket Kendaraan Tempur,” JASIEK (Jurnal Apl. Sains, Informasi, Elektron. dan Komputer), vol. 1, no. 1, pp. 28–37, 2019, doi: 10.26905/jasiek.v1i1.3142.

I. H. Setiadi and Y. H. P, “Lintas Menggunakan Image Processing Dengan Metode Background Subtraction Pada,” pp. 1–8.

E. R. Swedia, M. R. D. Septian, and M. Cahyanti, “Aplikasi Pendeteksi Rambu Lalu-Lintas Menggunakan Operator Sobel dan Metode Hamming,” pp. 5–8, 2017.

M. Feniche and T. Mazri, “Lane detection and tracking for intelligent vehicles: A survey,” Proc. 2019 Int. Conf. Comput. Sci. Renew. Energies, ICCSRE 2019, pp. 1–4, 2019, doi: 10.1109/ICCSRE.2019.8807727.

V. Q. Nguyen, C. Seo, H. Kim, and K. Boo, “A study on detection method of vehicle based on lane detection for a driver assistance system using a camera on highway,” 2017 Asian Control Conf. ASCC 2017, vol. 2018-January, pp. 424–429, 2018, doi: 10.1109/ASCC.2017.8287207.

N. Ma, G. Pang, X. Shi, and Y. Zhai, “An All-weather Lane Detection System Based on Simulation Interaction Platform,” IEEE Access, vol. PP, pp. 1–1, 2018, doi: 10.1109/access.2018.2885568.

X. Yan and Y. Li, “A method of lane edge detection based on Canny algorithm,” Proc. - 2017 Chinese Autom. Congr. CAC 2017, vol. 2017-January, pp. 2120–2124, 2017, doi: 10.1109/CAC.2017.8243122.

A. Mahmoud et al., “Real-time lane detection-based line segment detection,” 2018 New Gener. CAS, NGCAS 2018, pp. 57–61, 2018, doi: 10.1109/NGCAS.2018.8572124.

G. Ganchimeg and L. Helmut, “Vision based vehicle monitoring at road intersections,” Int. Conf. Electron. Inf. Commun. ICEIC 2018, vol. 2018-January, pp. 1–4, 2018, doi: 10.23919/ELINFOCOM.2018.8330568.

S. Shirke and C. Rajabhushanam, “A study of lane detection techniques and lane departure system,” 2017 Int. Conf. Algorithms, Methodol. Model. Appl. Emerg. Technol. ICAMMAET 2017, vol. 2017-January, pp. 1–4, 2017, doi: 10.1109/ICAMMAET.2017.8186654.

L. Yuan and X. Xu, “Adaptive Image Edge Detection Algorithm Based on Canny Operator,” Proc. - 2015 4th Int. Conf. Adv. Inf. Technol. Sens. Appl. AITS 2015, no. 2, pp. 28–31, 2016, doi: 10.1109/AITS.2015.14.

A. Andrew, J. L. Buliali, and A. Y. Wijaya, “Deteksi Kecepatan Kendaraan Berjalan di Jalan Menggunakan OpenCV,” J. Tek. ITS, vol. 6, no. 2, 2017, doi: 10.12962/j23373539.v6i2.23489.

A. Zalukhu, “Implementasi Metode Canny Dan Sobel Untuk Mendeteksi Tepi Citra,” J. Ris. Komput., vol. 3, no. 6, pp. 25–29, 2016.

R. T. Jurnal, “Implementasi Metode Deteksi Tepi Canny Pada Objek Sebagai Model Keamanan Aplikasi Pada Smartphone Android,” Petir, vol. 9, no. 1, pp. 16–20, 2019, doi: 10.33322/petir.v9i1.187.

N. B. Tsani and H. Harliana, “Implementasi Deteksi Tepi Canny Dengan Transformasi Powerlaw Dalam Mendeteksi Stadium Kanker Serviks,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 1, no. 01, pp. 22–33, 2019, doi: 10.46772/intech.v1i01.35.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Canny Edge Detection Pada Aplikasi Pendeteksi Jalur Lalu Lintas

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.