Diagnosa Tingkat Depresi Mahasiswa Akhir Terhadap Penelitian Ilmiah Menggunakan Algoritma K-Nearest Neighbor

Authors

  • Bernadus Gunawan Sudarsono Universitas Bung Karno Jakarta
  • Sri Poedji Lestari Universitas Bung Karno Jakarta

DOI:

https://doi.org/10.30865/mib.v4i4.2448

Keywords:

Diagnosa Tingkat Depresi Mahasiswa Akhir Terhadap Penelitian Ilmiah Menggunakan Algoritma K-Nearest Neighbor

Abstract

The achievement of a success is considered not an easy thing, such as reversing between a leaf and another, success must be achieved with sincerity, even risking everything that is in a person to achieve success and a lot of success can be obtained through higher education, higher education is a way Reaching goals, companies, industry and government prioritize higher education as trusted human resources, many final students experience depression due to many demands and several factors, excessive levels of depression result in all efforts and efforts will cause all chaos and can make someone making the wrong decision to result in death, a system is needed in diagnosing the level of depression in final students to reduce the risk of continuous depression using the k-Nearest Neighbor algorithm approach, with this algorithm it is il in the form of a decision on the level of depression experienced by final students

Author Biographies

Bernadus Gunawan Sudarsono, Universitas Bung Karno Jakarta

Program Studi Sistem Informasi

Sri Poedji Lestari, Universitas Bung Karno Jakarta

Program Studi Sistem Informasi

References

A. Pramudhita, “Tingkat Kecemasan Mahasiswa Tingkat Akhir Menghadapi Skripsi Di Stikes ‘ Aisyiyah,†Ilmu Keperawatan Sekol. Tinggi Ilmu Kesehat. ‘Aisyiyah Yogyakarta 2013, pp. 1–10, 2013.

N. Latifah, “Analisa dan Perancangan Sistem Penjadwalan Skripsi Berbasis Web Responsif,†Pros. Snatif, pp. 333–338, 2016.

N. N. Dalam, S. Pendukung, K. Untuk, and M. Tingkatan, “1 , 1 . 1 1,†pp. 1–7.

M. T. Masud, M. A. Mamun, K. Thapa, D. H. Lee, M. D. Griffiths, and S. H. Yang, “Unobtrusive monitoring of behavior and movement patterns to detect clinical depression severity level via smartphone,†J. Biomed. Inform., vol. 103, 2020.

V. Alfani, “Data Mining Untuk Klasifikasi Pinjaman Kredit Pensiunan Menggunakan Algoritma K-Nearest Neighbor,†J. Pelita Inform., vol. 18, no. April, pp. 281–286, 2019.

M. I. Maulana and A. A. Soebroto, “Klasifikasi Tingkat Stres Berdasarkan Tweet pada Akun Twitter menggunakan Metode Improved k-Nearest Neighbor dan Seleksi Fitur Chi- square,†vol. 3, no. 7, pp. 6662–6669, 2019.

Adi Nugroho, Analisis dan Perancangan Sistem Informasi dengan Metodologi Berorientasi Objek. 2005.

M. R. Islam, A. R. M. Kamal, N. Sultana, R. Islam, M. A. Moni, and A. Ulhaq, “Detecting Depression Using K-Nearest Neighbors (KNN) Classification Technique,†Int. Conf. Comput. Commun. Chem. Mater. Electron. Eng. IC4ME2 2018, no. February, pp. 1–4, 2018.

E. L. Charnov, G. H. Orians, and K. Hyatt, “Ecological Implications of Resource Depression,†Am. Nat., vol. 110, no. 972, pp. 247–259, 1976.

E. Buulolo, Data Mining Untuk Perguruan Tinggi. Deepublish, 2020.

A. Joshi and M. Ashish, “Analysis Of K-Nearest Neighbor Technique For Breast Cancer Disease Classification,†Int. J. Recent Sci. Res., vol. 8, no. 8, pp. 1005–19008, 2017.

H. Amalia, “Perbandingan Metode Data Mining Svm Dan Nn Untuk Klasifikasi Penyakit Ginjal Kronis,†J. Pilar Nusa Mandiri, vol. 14, no. 1, pp. 1–6, 2018.

Downloads

Published

2020-10-20