Ekstraksi Karakter Citra Menggunakan Optical Character Recognition Untuk Pencetakan Nomor Kendaraan Pada Struk Parkir

 (*)Khairi Ibnutama Mail (STMIK Triguna Dharma, Medan, Indonesia)
 Muhammad Gilang Suryanata (STMIK Triguna Dharma, Medan, Indonesia)

(*) Corresponding Author

Submitted: August 30, 2020; Published: October 20, 2020


Security in public parking facilities can be increased by adding the vehicle plate number to the parking receipt. This aims to prevent misidentification when the vehicle exits the parking facility due to negligence of the vehicle owner or the purpose of an irresponsible party. The license plate number can be printed on the parking receipt by extracting the characters from the vehicle image which is generally acquired at the parking entrance portal. The character extraction process can be done using the Optical Character Recognition method using the Tesseract library. Tesseract is the most accurate Optical Character Recognition library in its recognition, so that the extraction process can produce vehicle license plate text with minimal errors.


OCR, Tesseract, Parking, Segmentation, Binerization, License Plate

Full Text:


Article Metrics

Abstract view : 406 times
PDF - 274 times


S. S. Patil and A. S. Bhalchandra, “Pattern Recognition Using Genetic Algorithm,” in 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2017, no. x, pp. 310–314.

S. Tangwannawit and W. Saetang, “Recognition of Lottery Digits Using OCR Technology,” in 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), 2016, pp. 632–636.

A. C. Roy, M. K. Hossen, and D. Nag, “License Plate Detection and Character Recognition System for Commercial Vehicles Based on Morphological Approach and Template Matching,” Electr. Eng. Inf. Commun. Technol. (ICEEICT), 2016 3rd Int. Conf., pp. 1–6, 2016.

S. S. Omran and J. A. Jarallah, “Iraqi Car License Plate Recognition Using OCR,” 2017 Annu. Conf. New Trends Inf. Commun. Technol. Appl. NTICT 2017, no. March, pp. 298–303, 2017.

P. Hidayatullah, F. Feirizal, H. Permana, Q. Mauluddiah, and A. Dwitama, “License Plate Detection and Recognition for Indonesian Cars,” Int. J. Electr. Eng. Informatics, vol. 8, no. 2, pp. 331–346, Jun. 2016.

K. Ibnutama, Z. Panjaitan, and E. F. Ginting, “Modifikasi Metode Template Matching pada OCR Untuk Meningkatkan Akurasi Deteksi Plat Nomor Kendaraan,” J. Teknol. Sist. Inf. dan Sist. Komput. TGD, vol. 2, no. 2, pp. 21–29, 2019.

J. B. L. Bernardo and L. J. M. Raboy, “Vehicle Plate Monitoring and Information System Using Optical Character Recognition (OC) Technique,” SSRN Electron. J., vol. 1, no. December, pp. 1–6, 2015.

S. K. Henge and B. Rama, “Comprative Study With Analysis of OCR Algorithms and Invention Analysis of Character Recognition Approched Methodologies,” in 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1–6.

S. Lukas, P. Yugopustito, and D. Krisnadi, “Identification of Indonesian Vehicle Registration Plate by Adaptive Thresholding and Region Labeling Algorithm,” Int. Conf. ICT Knowl. Eng., pp. 1–4, 2013.

A. S., J. Yankey, and E. O., “An Automatic Number Plate Recognition System using OpenCV and Tesseract OCR Engine,” Int. J. Comput. Appl., vol. 180, no. 43, pp. 1–5, 2018.

R. Smith, “An Overview of the Tesseract OCR Engine,” Lect. Google Code. Google Inc, pp. 629–633, 2007.

M. Koistinen, J. Kervinen, and K. Kettunen, “How to Improve Optical Character Recognition of Historical Finnish Newspapers Using Open Source Tesseract OCR Engine,” 8th Lang. Technol. Conf. Hum. Lang. Technol. as a Chall. Comput. Sci. Linguist., no. November, pp. 279–283, 2018.

S. W. Utama and A. Kusumawardhani, “Aplikasi Pendeteksi Plat Nomor Negara Indonesia Menggunakan OpenCV dan Tesseract OCR pada Android Studio,” no. December, 2017.

M. K. Audichya, “A Study to Recognize Printed Gujarati Characters Using Tesseract OCR,” Int. J. Res. Appl. Sci. Eng. Technol., vol. V, no. IX, pp. 1505–1510, 2017.

B. Nunamaker, S. S. Bukhari, D. Borth, and A. Dengel, “A Tesseract-based OCR Framework for Historical Documents Lacking Ground-truth Text,” in 2016 IEEE International Conference on Image Processing (ICIP), 2016, pp. 3269–3273.

I. K. G. D. Putra and I. G. Suarjana, “Segmentasi Citra Retina Digital Retinopati Diabetes Untuk Membantu Pendeteksian Mikroaneurisma,” J. Tek. Elektro, vol. 9, no. 1, pp. 44–49, 2010.

A. Septiarini, “Segmentasi Karakter Menggunakan Profil Proyeksi,” J. Inform. Mulawarman, vol. 7, no. 2, pp. 66–69, 2012.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Ekstraksi Karakter Citra Menggunakan Optical Character Recognition Untuk Pencetakan Nomor Kendaraan Pada Struk Parkir



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.