Penerapan Algoritma K-Means Untuk Pengelompokkan Penyakit Kronis pada Warga Lansia (Studi Kasus Pada: Posyandu Lansia RW 07)
DOI:
https://doi.org/10.30865/mib.v4i4.2410Keywords:
Posyandu, Elderly Residents, Chronic Disease, K-Means AlgorithmAbstract
Health is very valuable for all humans, anyone can experience health problems, especially for the elderly. Posyandu elderly RW 07 Pulogebang sub-district is one of the health services available for elderly residents. One of the government's efforts to deal with health problems is by establishing posyandu for elderly residents, considering how elderly people are vulnerable to health problems. At this time, health problems have the potential to attack people who are elderly, and have a history of chronic disease and a weak immune system, more likely to develop disease. In order to provide proper treatment, the elderly posyandu officers classify elderly people who have a history of chronic disease so that they can provide appropriate education and treatment. The data collection and counseling methods carried out by the elderly posyandu are still random and take turns with elderly residents in RW 07, Pulogebang sub-district. However, this method has the risk of being less accurate with the resulting data, because each resident has a different history of disease. Therefore we need an analysis of the health data of the elderly, so that it can be seen the distribution of people who have a history of chronic disease. One solution is to use data mining. So that in this study the clustering technique was used using the K-Means algorithm to classify patients with chronic disease in the elderly residents of RW 07, Pulogebang Village.
References
Ade Bastian, Harun Sujadi, dan Gigin Febrianto, Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (studi kasus kabupaten majalengka), Jurnal Sistem Informasi, Volume 14, Issue 1, April 2018, 26-32.
Ardilla, Y., Tjandrasa, H., Arieshanti, I., & Permutasi, A. E. (2014). Deteksi Penyakit Epilepsi dengan Menggunakan Multilayer Perceptron. Jurnal Teknik POMITS, 3(1), 1–5.
Darmi, Y., & Setiawan, A. (2016). Penerapan metode clustering k-means dalam pengelompokan penjualan produk. Jurnal Media Infotama Universitas Muhammadiyah Bengkulu, 12(2), 148–157.
Magdalena Simanjuntak, Ediman Manik, P. R. S. (2019). Penerapan Data Mining Pengelompokkan Penyakit Menular Seksual (PMS) Menggunakan Metode Clustering. 4(1), 51–56.
Mardalius, M. (2018). Pemanfaatan Rapid Miner Studio 8.2 Untuk Pengelompokan Data Penjualan Aksesoris Menggunakan Algoritma K-Means. Jurteksi, 4(2), 123–132.
Narwati, N. (2010). Pengelompokan Mahasiswa Menggunakan Algoritma K-Means. Jurnal Dinamika Informatika, 2(2).
Nielza Atthina, D. (2014). Klasterisasi Data Kesehatan Penduduk untuk Menentukan Rentang Derajat Kesehatan Daerah dengan Metode K-Means. Aseminar Nasional Aplikasi Teknologi Infromasi (SNATI), 1(Klustering), B-52-B-59.
Prilianti, K. R., & Kunci, K. (2014). Aplikasi Text Mining untuk Automasi Penentuan Tren Topik Skripsi dengan Metode K-Means Clustering. 2(1), 1–6.
Siregar, A. M. (2019). Penerapan Algoritma K-Means Untuk Pengelompokan Daerah Rawan Bencana Di Indonesia. INTERNAL (Information System Journal), 1(2), 1–10. https://doi.org/10.32627/internal.v1i2.42
Sulastri, H., & Gufroni, A. I. (2017). Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia. Jurnal Nasional Teknologi Dan Sistem Informasi, 3(2), 299–305. https://doi.org/10.25077/teknosi.v3i2.2017.299-305
Yusuf, A., & Priambadha, T. (2013). Support Vector Machines Yang Didukung K-Means Clustering Dalam Klasifikasi Dokumen. JUTI: Jurnal Ilmiah Teknologi Informasi, 11(1), 15. https://doi.org/10.12962/j24068535.v11i1.a15.
Mentari Tri Indah Rahmayani, Analisis Clustering tingkat Keparahan Penyakit Pasien Menggunakan Algoritma K-Means (studi kasus di puskesmas bandar seikijang), JITI, Vol.1, No. 2, September 2018
Anindya Khrisna Wardhani, Implementasi Algoritma K-Means untuk Pengelompokkan Penyakit Pasien pada Puskesmas Kajen Pekalongan, Jurnal Transformatika, Volume 14, Nomor 1, Juli 2016, 30-37
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).